Discrete Potential Theory and Applications

离散势理论及应用

基本信息

  • 批准号:
    EP/L002787/1
  • 负责人:
  • 金额:
    $ 12.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The project is devoted to basic research in pure mathematics. It is based on the well-studied interplay between the theory of electrical networks -seen as abstract mathematical tools- and the theory of random walks on graphs. Four specific topics within this framework are addressed by the project:-- The Poisson boundary for random walk on graphs and groups;We follow an active tradition in group theory, triggered by Kesten, where results about groups are obtained indirectly by considering a random walk on the group and relating its behaviour, or the structure of a boundary associated to it, to the algebraic properties of the group. The project benefits from a recent strong result of the applicant providing a criterion for the Poisson boundary, as well as a novel idea of associating a random finite graph rather than a random walk with a group, exploiting the recent theory of graphons by Lovasz et. al. -- Discrete conformal uniformization in the sense of Benjamini & Schramm;We seek to strengthen a new result of the applicant, related to the above, that answered a question of Benjamini & Schramm. Such a strengthening will provide new results on the Poisson boundary.-- The relationship between the cover time and the cover cost in extremal and random finite graphs.The cover time of a graph is an important concept in mathematics and computer science, and is even studied by physicists, but it is very hard to compute or even approximate. Using the concept of cover cost that the applicant introduced, we seek to simplify the approximation of the cover time for many classes of graphs by breaking it down into two steps: showing that it is close to the cover cost, and computing the (provably more tractable) cover cost.These topics lie in different areas of mathematics, all of which have seen a lot of research activity in recent years. They are interlinked by the general theme of electrical networks, random walks, and their interplay, and share further finer interconnections. The project aims to contribute by producing new results individually for each sub-topic as well as by establishing or strengthening connections between them. The project's results will be of interest to several research communities, including Graph Theory, Probability, (discrete) Potential Theory and Group Theory.
这个项目致力于纯数学的基础研究。它的基础是对电子网络理论(被视为抽象的数学工具)和图上随机游走理论之间的相互作用进行了深入研究。该项目解决了该框架内的四个特定主题:—图和群上随机游走的泊松边界;我们遵循由Kesten引发的群论的积极传统,通过考虑在群体上随机行走并将其行为或与之相关的边界结构与群体的代数性质联系起来,间接获得关于群体的结果。该项目受益于申请人最近提供泊松边界标准的强有力结果,以及将随机有限图而不是随机漫步与群体联系起来的新想法,利用Lovasz等人最近的图论——本杰明和施拉姆意义上的离散保形均匀化;我们寻求加强申请人的新结果,与上述相关,回答了本杰明和施拉姆的一个问题。这种强化将提供泊松边界上的新结果。——极值有限图与随机有限图中覆盖时间与覆盖成本的关系。图的覆盖时间是数学和计算机科学中的一个重要概念,甚至被物理学家研究过,但它很难计算,甚至很难近似。使用申请人介绍的覆盖成本的概念,我们试图通过将其分解为两个步骤来简化许多类图的覆盖时间的近似:显示它接近覆盖成本,并计算(可证明更易于处理的)覆盖成本。这些主题位于数学的不同领域,近年来都有大量的研究活动。它们通过电子网络、随机漫步及其相互作用的总体主题相互联系,并共享更精细的相互联系。该项目旨在通过为每个子主题单独产生新的结果以及建立或加强它们之间的联系来作出贡献。该项目的结果将引起几个研究团体的兴趣,包括图论、概率论、(离散)势论和群论。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Bradley-Terry condition is L 1 -testable
Bradley-Terry 条件为 L 1 -可测试
  • DOI:
    10.1016/j.disc.2017.10.026
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Georgakopoulos A
  • 通讯作者:
    Georgakopoulos A
Brownian Motion on graph-like spaces
类图空间上的布朗运动
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Agelos Georgakopoulos
  • 通讯作者:
    Agelos Georgakopoulos
On covers of graphs by Cayley graphs
凯莱图表的封面
On graph-like continua of finite length
关于有限长度的类图连续体
  • DOI:
    10.1016/j.topol.2014.05.017
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Georgakopoulos A
  • 通讯作者:
    Georgakopoulos A
Hyperbolicity vs. Amenability for Planar Graphs.
平面图的双曲性与适应性。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Agelos Georgakopoulos其他文献

The planar Cayley graphs are effectively enumerable II
平面凯莱图是有效可枚举的 II
Writing is not a soft skill
写作不是一项软技能
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Agelos Georgakopoulos
  • 通讯作者:
    Agelos Georgakopoulos
The planar cubic Cayley graphs
平面三次凯莱图
  • DOI:
    10.1090/memo/1190
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Agelos Georgakopoulos
  • 通讯作者:
    Agelos Georgakopoulos
On walk-regular graphs and graphs with symmetric hitting times
  • DOI:
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Agelos Georgakopoulos
  • 通讯作者:
    Agelos Georgakopoulos
A Hamiltonian Cycle in the Square of a 2-connected Graph in Linear Time
线性时间内二连通图平方中的哈密顿循环
  • DOI:
    10.1137/1.9781611975031.107
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Stephen Alstrup;Agelos Georgakopoulos;E. Rotenberg;C. Thomassen
  • 通讯作者:
    C. Thomassen

Agelos Georgakopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Agelos Georgakopoulos', 18)}}的其他基金

Minors at large
未成年人在逃
  • 批准号:
    EP/Y004302/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Research Grant
New Dimensions in Probability on Groups
群概率的新维度
  • 批准号:
    EP/V048821/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Research Grant
Graph theory in higher dimensions
高维图论
  • 批准号:
    EP/V009044/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Research Grant

相似国自然基金

Transient Receptor Potential 通道 A1在膀胱过度活动症发病机制中的作用
  • 批准号:
    30801141
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
  • 批准号:
    2348748
  • 财政年份:
    2024
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Standard Grant
Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
  • 批准号:
    2401242
  • 财政年份:
    2024
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Standard Grant
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
  • 批准号:
    23K03149
  • 财政年份:
    2023
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
  • 批准号:
    23K04666
  • 财政年份:
    2023
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
  • 批准号:
    2324706
  • 财政年份:
    2023
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Standard Grant
CAREER: Tropical to temperate forest dynamics and their potential influences on plant performance strategies, a theory-data fusion approach
职业:热带到温带森林动态及其对植物性能策略的潜在影响,一种理论数据融合方法
  • 批准号:
    2239483
  • 财政年份:
    2023
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Continuing Grant
Breakthrough in the New Formenlehre: On the Musicological Potential of Music Theory and Analysis
新形式的突破:论音乐理论与分析的音乐学潜力
  • 批准号:
    2884601
  • 财政年份:
    2023
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Studentship
The PayCaptain SmartSave: A nudge-theory-based AI-algorithm-driven app to unlock peoples' savings potential and generate financial resilience
PayCaptain SmartSave:一款基于助推理论的人工智能算法驱动的应用程序,可释放人们的储蓄潜力并增强财务弹性
  • 批准号:
    10032784
  • 财政年份:
    2022
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Collaborative R&D
Using Theory- and Data-Driven Neurocomputational Approaches and Digital Phenotyping to Understand RDoC Acute and Potential Threat
使用理论和数据驱动的神经计算方法和数字表型来了解 RDoC 急性和潜在威胁
  • 批准号:
    10661086
  • 财政年份:
    2022
  • 资助金额:
    $ 12.55万
  • 项目类别:
Convex Geometric Potential Theory
凸几何势理论
  • 批准号:
    RGPIN-2017-05036
  • 财政年份:
    2022
  • 资助金额:
    $ 12.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了