Intelligent Management of Big Data Storage

大数据存储智能管理

基本信息

  • 批准号:
    EP/L00738X/1
  • 负责人:
  • 金额:
    $ 46.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The continuing revolutionary growth of data volumes and the increasing diversity of data-intensive applications demands an urgent investigation of effective means for efficient storage management. In the summer of 2012, the volume of data in the world was around 10 to the power of 21 bytes, about 1.1TB per internet user, and this volume continues to increase at about 50% Compound Annual Growth Rate. It has been said that "By 2013, storage systems will no longer be manually tunable for performance or manual data placement. Similar to virtual memory management, the storage array's algorithms will determine data placement (The Future of Storage Management, Gartner 2010). Meeting service-level objective/agreement (SLO/SLA) requirements for data-intensive applications is not straightforward and will become increasingly more challenging. In particular, there is an increasing need for intelligent mechanisms to manage the underlying architectures' infrastructure, taking into account the advent of new device technologies.To cope with this challenge, we propose a research program in the mainstream of EPSRC's theme "Towards an intelligent information infrastructure (TI3)", specifically with reference to the "deluge of data" and the exploration of "emerging technologies for low power, high speed, high density, low cost memory and storage solutions". Today, with the widespread distribution of storage, for example in cloud storage solutions, it is difficult for an infrastructure provider to decide where data resides, on what type of device, co-located with what other data owned by which other (maybe competing) user, and even in what country. The need to meet energy-consumption targets compounds this problem. These decisional problems motivate the present research proposal, which aims at developing new model-based techniques and algorithms to facilitate the effective administration of data-intensive applications and their underlying storage device infrastructure.We propose to develop techniques and tools for the quantitative analysis and optimisation of multi-tiered data storage systems. The primary objective is to develop novel modelling approaches to define and facilitate the most appropriate data placement and data migration strategies. These strategies share the common aim of placing data on the most effective target device in a tiered storage architecture. In the proposed research, the allocation algorithm will be able to decide the placement strategy and trigger data migrations to optimize an appropriate utility function. Our research will also take into account the likely quantitative impact of evolving storage and energy-efficiency technologies, by developing suitable models of these and integrating them into our tier-allocation methodologies. In essence, our models will be specialised for different storage and power technologies (e.g. fossil fuel, solar, wind). The models, optimisers and methodologies that we produce will be tested in pilot implementations on our in-house cloud (already purchased); on Amazon EC2 resources; and finally in an industrial, controlled production environment as part of our collaboration with NetApp. This will provide feedback to enable us to refine, enhance and extend our techniques, and hence to further improve the utility of the biggest of storage systems.
随着数据量的持续革命性增长和数据密集型应用的日益多样化,迫切需要研究有效的存储管理方法。2012年夏天,全球数据量约为10的21字节次方,每个互联网用户约1.1 TB,并且这一数据量继续以约50%的复合年增长率增长。有人说,到2013年,存储系统将不再能够手动调整性能或手动放置数据。与虚拟内存管理类似,存储阵列的算法将决定数据位置(《存储管理的未来》,Gartner 2010)。满足数据密集型应用程序的服务级别目标/协议(SLO/SLA)要求并非易事,而且将变得越来越具有挑战性。特别是,考虑到新设备技术的出现,对智能机制来管理底层架构的基础设施的需求越来越大。为了应对这一挑战,我们提出了一个以EPSRC的主题为主流的研究计划:走向智能信息基础设施(Ti3),特别是参考了“海量数据”和探索“用于低功耗、高速度、高密度、低成本的存储器和存储解决方案的新兴技术”。如今,随着存储的广泛分布,例如在云存储解决方案中,基础设施提供商很难决定数据驻留在哪里、在什么类型的设备上、与哪个其他(可能是竞争对手)用户拥有的哪些其他数据共存,甚至在哪个国家/地区。满足能源消耗目标的需要加剧了这个问题。这些决策问题促使本研究提案旨在开发新的基于模型的技术和算法,以促进对数据密集型应用及其底层存储设备基础设施的有效管理。我们建议开发用于多层数据存储系统的定量分析和优化的技术和工具。主要目标是开发新的建模方法,以确定和促进最适当的数据放置和数据迁移战略。这些策略的共同目标是将数据放在分层存储体系结构中最有效的目标设备上。在所提出的研究中,分配算法将能够决定放置策略并触发数据迁移以优化适当的效用函数。我们的研究还将考虑到不断发展的存储和能效技术可能产生的量化影响,方法是开发合适的存储和能效技术模型,并将其整合到我们的层分配方法中。从本质上讲,我们的车型将专门针对不同的存储和电力技术(例如化石燃料、太阳能、风能)。我们生产的模型、优化器和方法将在我们的内部云(已经购买)、Amazon EC2资源上的试点实施中进行测试,最后作为我们与NetApp合作的一部分在工业受控生产环境中进行测试。这将提供反馈,使我们能够改进、增强和扩展我们的技术,从而进一步提高最大存储系统的利用率。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
QRF An Optimization-Based Framework for Evaluating Complex Stochastic Networks
QRF 用于评估复杂随机网络的基于优化的框架
Performance-Energy Trade-offs in Smartphones
智能手机的性能与能耗权衡
  • DOI:
    10.1145/2988287.2989140
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chis T
  • 通讯作者:
    Chis T
Analyzing Replacement Policies in List-Based Caches with Non-Uniform Access Costs
Accelerating Performance Inference over Closed Systems by Asymptotic Methods
通过渐近方法加速封闭系统的性能推理
Managing Response Time Tails by Sharding
通过分片管理响应时间尾部
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Harrison其他文献

Can Measurement Error Explain the Weakness of Productivity Growth in the Canadian Construction Industry
测量误差能否解释加拿大建筑业生产率增长的疲软
The case for undergraduate education in quality management
质量管理本科教育案例
  • DOI:
    10.1080/09544120050007904
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Disney;Helen Crabtree;Peter Harrison
  • 通讯作者:
    Peter Harrison
The Bible and the emerging scientific world view
圣经和新兴的科学世界观
  • DOI:
    10.1017/cho9781139048781.029
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Harrison
  • 通讯作者:
    Peter Harrison
Temporal settlement patterns of larvae of the broadcast spawning reef coral Favites chinensis and the broadcast spawning and brooding reef coral Goniastrea aspera from Okinawa, Japan
日本冲绳产卵礁珊瑚 Favites chinensis 和产卵礁珊瑚 Goniastrea aspera 幼虫的时间沉降模式
  • DOI:
    10.1007/s00338-005-0476-4
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yoko Nozawa;Peter Harrison
  • 通讯作者:
    Peter Harrison
God and animal minds A response to Lynch
  • DOI:
    10.1007/bf02786035
  • 发表时间:
    1996-09-01
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Peter Harrison
  • 通讯作者:
    Peter Harrison

Peter Harrison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Harrison', 18)}}的其他基金

Ensembl in a new era - deep genome annotation of domesticated animal species and breeds
新时代的Ensembl——家养动物物种和品种的深度基因组注释
  • 批准号:
    BB/W019108/1
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: Next generation collaborative annotation of genomes and synteny
BBSRC-NSF/BIO:下一代基因组和同线性协作注释
  • 批准号:
    BB/T01461X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Research Grant
Approximate product-forms and reversed processes for performance analysis (APROPOS)
用于性能分析的近似产品形式和逆向过程 (APROPOS)
  • 批准号:
    EP/I030921/1
  • 财政年份:
    2012
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Research Grant
Religion and the Origins of Modern Science
宗教与现代科学的起源
  • 批准号:
    AH/H039600/1
  • 财政年份:
    2011
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Fellowship
COMPOSITIONAL ANALYSIS OF MARKOVIAN PROCESS ALGEBRA (CAMPA)
马尔可夫过程代数的组合分析 (CAMPA)
  • 批准号:
    EP/G050724/1
  • 财政年份:
    2009
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Research Grant
Fluid Approximations for Quantitative Analysis
用于定量分析的流体近似
  • 批准号:
    EP/F048726/1
  • 财政年份:
    2009
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Research Grant
Separability and Response Times in Stochastic Models (SPARTACOS)
随机模型中的可分离性和响应时间 (SPARTACOS)
  • 批准号:
    EP/D047587/1
  • 财政年份:
    2006
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Research Grant
Market Models for Grid Computing
网格计算的市场模型
  • 批准号:
    EP/D061717/1
  • 财政年份:
    2006
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Research Grant
Analyses of Ceramic and Lithic Data From the Pulltrouser Swamp Study Zone in Northern Beize
北泽北部拉裤沼泽研究区陶瓷和石器资料分析
  • 批准号:
    8409684
  • 财政年份:
    1984
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Standard Grant
Prehistoric Agriculture in Belize
伯利兹的史前农业
  • 批准号:
    8024516
  • 财政年份:
    1980
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Standard Grant

相似海外基金

A big data management framework on fog devices for real-time IoT and computer vision applications
用于实时物联网和计算机视觉应用的雾设备大数据管理框架
  • 批准号:
    22KF0314
  • 财政年份:
    2023
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A Smart Big Data Analytics and Knowledge Management Framework
智能大数据分析和知识管理框架
  • 批准号:
    RGPIN-2018-05550
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Discovery Grants Program - Individual
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
  • 批准号:
    RGPIN-2016-03787
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Discovery Grants Program - Individual
Big Data Supported Strategic Advancement in Model-Based Environmental Assessment and Management
大数据支持基于模型的环境评估和管理的战略推进
  • 批准号:
    RGPIN-2018-05019
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Discovery Grants Program - Individual
Integration of Remote Sensing Big Data into the Management and Design of Highway Infrastructures
遥感大数据融入公路基础设施管理和设计
  • 批准号:
    RGPIN-2019-04576
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Discovery Grants Program - Individual
DAT-Emulating target trials with big data to strengthen the evidence base for the clinical management of opioid use disorder
利用大数据模拟 DAT 目标试验,加强阿片类药物使用障碍临床管理的证据基础
  • 批准号:
    10551310
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
  • 批准号:
    RGPIN-2016-03787
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Big Computation and the Management of Emerging Infectious Diseases
职业:大计算和新发传染病的管理
  • 批准号:
    2136034
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:
    Continuing Grant
Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
  • 批准号:
    10369732
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:
DAT-Emulating target trials with big data to strengthen the evidence base for the clinical management of opioid use disorder
利用大数据模拟 DAT 目标试验,加强阿片类药物使用障碍临床管理的证据基础
  • 批准号:
    10368971
  • 财政年份:
    2021
  • 资助金额:
    $ 46.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了