Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
基本信息
- 批准号:10369732
- 负责人:
- 金额:$ 8.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ANCA vasculitisAddressAlgorithmsAntineutrophil Cytoplasmic AntibodiesAttentionBig DataCardiovascular DiseasesCardiovascular systemCaringCessation of lifeChronicClinicalClinical InformaticsCodeCollaborationsComplicationDataData SetData SourcesDecision MakingDevelopmentDiabetes MellitusDiagnosisDiagnosticDiseaseDisease ClusteringsElectronic Health RecordEpidemiologyExcess MortalityFlareGeneral PopulationGoalsHeadHealthcare SystemsHypertensionIndividualInfectionInflammationInformaticsKidneyKidney DiseasesKidney FailureKnowledgeLeftLinkLogistic RegressionsLung diseasesMachine LearningMedicaidMedicareMedicare claimMedicare/MedicaidMetabolicMethodologyMethodsModificationNatural Language ProcessingObesityOrganOutcomeOutcome MeasurePatientsPerformancePersonsPharmaceutical PreparationsPhenotypePositioning AttributePredictive FactorPreparationProviderPublishingQuality of lifeRemission InductionResearchRespiratory Tract InfectionsRheumatismRiskRisk FactorsSamplingStructureTest ResultTextTimeTreatment EffectivenessTreatment-related toxicityVasculitisWorkbasecase findingclinically relevantcohortcomparative effectiveness studycomparative efficacydata resourceexperiencehigh riskimprovedimproved outcomemachine learning algorithmmodels and simulationmortalitymortality risknovelpatient orientedpatient populationperson centeredpersonalized approachpersonalized carepersonalized medicinepreventprogramsrespiratorystructured datatreatment comparisontreatment strategyunstructured data
项目摘要
PROJECT SUMMARY
ANCA-associated vasculitis (AAV) is a small vessel vasculitis associated with disease- and treatment-related
complications that contribute to reduced quality of life and excess mortality compared to the general
population. In the context of improving rates of flare and mortality with contemporary treatments, increasing
attention is shifting to complications (e.g., renal failure, infection, cardiovascular disease) as clinically-relevant
and patient-oriented outcomes. However, our understanding of how best to address and prevent complications
is limited because they are typically studied in isolation from a “single disease framework.” We do not
understand how complications tend to co-occur in individuals in complication clusters. Moreover, with several
available treatment options for AAV, comparative effectiveness studies using real-world experience data and
relevant outcomes like complication clusters are needed to guide treatment decisions in a manner that
personalizes care, improves quality of life, and reduces mortality. However, we do not have the methods to
accurately and efficiently assemble an AAV cohort using state-of-the-art algorithms that leverage
heterogeneous claims and electronic health record (EHR) data. The aims of this proposal are to (1) apply
advanced clinical informatics methods (i.e., machine learning and natural language processing) to identify AAV
cases in big data to assemble a large cohort and (2) determine complication clusters in an AAV cohort by
applying latent transition analysis. To achieve these aims, we will leverage methodologic expertise developed
through collaborations established during the PI’s K23 and use a novel data source that includes EHR data
linked to Medicare and Medicaid claims. The PI’s team has previously demonstrated that unstructured (i.e.,
free-text) EHR data can be used to study topics mentioned in clinical notes of AAV patients and that keywords
in these notes can help identify AAV patients but neither machine learning nor sophisticated natural language
processing have been previously used to identify AAV cases. In addition, our prior work has examined AAV
complications in isolation (e.g., renal disease, cardiovascular disease) but here we seek to identify phenotypes
of complications (complication clusters) that tend to co-occur in patients, how patients transition between
clusters over time, and what factors predict a person’s membership in a complication cluster. The major goal of
this proposal is to build further preliminary data in preparation for an R01 application over the next 24 months.
The planned R01 will focus on comparative effectiveness studies in AAV using cohorts assembled in big data
and clinically-relevant, patient-oriented outcomes, like complication clusters. The results of these studies can
then be used as inputs in simulation models built during my K23 to guide optimal patient-oriented treatment
decisions. Ultimately, the goal of this research program is to improve quality of life and reduce complications
and mortality by using data to inform personalized approaches to AAV treatment.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Scott Wallace其他文献
Clinical characteristics and outcomes of COVID-19 breakthrough infections among vaccinated patients with systemic autoimmune rheumatic diseases
接种疫苗的系统性自身免疫性风湿病患者中 COVID-19 突破性感染的临床特征和结果
- DOI:
10.1136/annrheumdis-2021-221326 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:20.600
- 作者:
Claire Cook;Naomi J Patel;Kristin M. D’Silva;Tiffany Y -T Hsu;Michael DiIorio;Lauren Prisco;Lily W Martin;Kathleen Vanni;Alessandra Zaccardelli;Derrick Todd;Jeffrey A Sparks;Zachary Scott Wallace - 通讯作者:
Zachary Scott Wallace
Zachary Scott Wallace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachary Scott Wallace', 18)}}的其他基金
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
- 批准号:
10292270 - 财政年份:2021
- 资助金额:
$ 8.32万 - 项目类别:
Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
- 批准号:
10198103 - 财政年份:2021
- 资助金额:
$ 8.32万 - 项目类别:
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
- 批准号:
9886161 - 财政年份:2018
- 资助金额:
$ 8.32万 - 项目类别:
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
- 批准号:
10372989 - 财政年份:2018
- 资助金额:
$ 8.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 8.32万 - 项目类别:
Research Grant