Highly-parallel algorithms and architectures for high-throughput wireless receivers

高吞吐量无线接收器的高度并行算法和架构

基本信息

  • 批准号:
    EP/L010550/1
  • 负责人:
  • 金额:
    $ 61.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

During the past two decades, reliable wireless communication at near-theoretical-limit transmission throughputs has been facilitated by receivers that operate on the basis of the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm. Most famously, this algorithm is employed for turbo error correction in the Long Term Evolution (LTE) standard for cellular telephony, as well as in its previous-generation predecessors. Looking forward, turbo error correction promises transmission throughputs in excess of 1 Gbit/s, which is the goal specified in the IMT-Advanced requirements for next-generation cellular telephony standards. Throughputs of this order have only very recently been achieved by State-Of-the-Art (SOA) LTE turbo decoder implementations. However, this has been achieved by exploiting every possible opportunity to increase the parallelism of the BCJR algorithm at an architectural level, implying that the SOA approach has reached its fundamental limit. This limit may be attributed to the data dependencies of the BCJR algorithm, resulting in an inherently serial nature that cannot be readily mapped to processing architectures having a high degree of parallelism.Against this background, we propose to redesign turbo decoder implementations at an algorithmic level, rather than at the architectural level of the SOA approach. More specifically, we have recently been successful in devising an alternative to the BCJR algorithm, which has the same error correction capability, but does not have any data dependencies. Owing to this, our algorithm can be mapped to highly-parallel many-core processing architectures, facilitating an LTE turbo decoder processing throughput that is more than an order of magnitude higher than the SOA, satisfying future demands for gigabit throughputs. We will achieve this for the first time by developing a custom Field Programmable Gate Array (FPGA) architecture, comprising hundreds of processing cores that are interconnected using a reconfigurable Benes network. Furthermore, we will develop custom Network-on-Chip (NoC) architectures that facilitate different trade-offs between chip area, energy-efficiency, reconfigurability, processing throughput and latency. In parallel to developing these high-performance custom implementation architectures, we will apply our novel algorithm to both existing Graphics Processing Unit (GPU) and NoC architectures. This will grant us a rapid pace, allowing us to apply our novel algorithm to not only error correction, but to all aspects of receiver operation, including demodulation, equalisation, source decoding, channel estimation and synchronisation. Drawing upon our high-throughput algorithms and highly-parallel processing architectures, we will develop techniques for holistically optimising the algorithmic and implementational parameters of both the transmitter and receiver. This will facilitate practical high-performance schemes, which can pave the way for future generations of wireless communication.This research addresses key EPSRC priorities in the Information and Communication Technologies theme (http://www.epsrc.ac.uk/ourportfolio/themes/ict), including 'Many-core architectures and concurrency in distributed and embedded systems' and 'Towards an intelligent information infrastructure'. The 'Working together' priority is also addressed, since this cross-disciplinary research will develop new knowledge that spans the gap between high-performance communication theory and high-performance hardware design. This research will offer new insights into the design of many-core architectures, which the hardware design community will be able to apply in the design of general purpose architectures. Furthermore, the communication theory community will be able to apply our algorithms across even wider aspects of receiver operation.
在过去的二十年里,基于巴赫尔-科克-耶利内克-拉维夫(BCJR)算法的接收器促进了以接近理论极限的传输吞吐量进行可靠的无线通信。最著名的是,在蜂窝电话的长期演进(LTE)标准中以及其上一代前身中,该算法被用于Turbo纠错。展望未来,Turbo纠错保证传输吞吐量超过1Gbit/S,这是IMT-Advanced对下一代蜂窝电话标准的要求中规定的目标。这种量级的吞吐量直到最近才通过最先进的(SOA)LTE Turbo解码器实现而实现。然而,这是通过利用所有可能的机会在体系结构级别增加BCJR算法的并行性来实现的,这意味着SOA方法已经达到了其基本极限。这种局限性可能归因于BCJR算法的数据依赖性,导致其固有的串行性不能很容易地映射到具有高度并行性的处理体系结构上。更具体地说,我们最近成功地设计了BCJR算法的替代方案,它具有相同的纠错能力,但没有任何数据依赖性。正因为如此,我们的算法可以映射到高度并行的多核处理架构上,使得LTE Turbo解码器的处理吞吐量比SOA高一个数量级以上,满足未来对千兆吞吐量的需求。我们将首次通过开发定制的现场可编程门阵列(FPGA)架构来实现这一点,该架构包括数百个使用可重新配置的Benes网络互连的处理核心。此外,我们将开发定制的片上网络(NoC)架构,以促进芯片面积、能效、可重构性、处理吞吐量和延迟之间的不同权衡。在开发这些高性能定制实现体系结构的同时,我们将把我们的新算法应用于现有的图形处理单元(GPU)和NoC体系结构。这将赋予我们快速的速度,使我们不仅可以将我们的新算法应用于纠错,还可以应用于接收器操作的所有方面,包括解调、均衡、信源解码、信道估计和同步。凭借我们的高吞吐量算法和高度并行处理架构,我们将开发全面优化发送器和接收器的算法和实现参数的技术。这将促进实用的高性能方案,为下一代无线通信铺平道路。这项研究讨论了信息和通信技术主题(http://www.epsrc.ac.uk/ourportfolio/themes/ict),中的关键EPSRC优先事项,包括“分布式和嵌入式系统中的多核体系结构和并发性”和“走向智能信息基础设施”。由于这种跨学科的研究将开发跨越高性能通信理论和高性能硬件设计之间的差距的新知识,因此也讨论了“共同工作”的优先事项。这项研究将为多核体系结构的设计提供新的见解,硬件设计界将能够将其应用于通用体系结构的设计。此外,通信理论界将能够将我们的算法应用于接收器操作的更广泛方面。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unary-Coded Dimming Control Improves ON-OFF Keying Visible Light Communication
  • DOI:
    10.1109/tcomm.2017.2759271
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Babar, Zunaira;Izhar, Mohd Azri Mohd;Hanzo, Lajos
  • 通讯作者:
    Hanzo, Lajos
Design of digital testbeds for undergraduate microelectronics teaching
本科微电子学教学数字化试验台设计
  • DOI:
    10.1109/ewme.2016.7496471
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brejza M
  • 通讯作者:
    Brejza M
20 Years of Turbo Coding and Energy-Aware Design Guidelines for Energy-Constrained Wireless Applications
  • DOI:
    10.1109/comst.2015.2448692
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    35.6
  • 作者:
    Matthew F. Brejza;Liang Li;R. Maunder;B. Al-Hashimi;C. Berrou;L. Hanzo
  • 通讯作者:
    Matthew F. Brejza;Liang Li;R. Maunder;B. Al-Hashimi;C. Berrou;L. Hanzo
On the Physical Layer Security of the Cooperative Rate-Splitting-Aided Downlink in UAV Networks
无人机网络协同速率分割辅助下行链路物理层安全
Low-Complexity Improved-Rate Generalised Spatial Modulation: Bit-to-Symbol Mapping, Detection and Performance Analysis
  • DOI:
    10.1109/tvt.2021.3129843
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Jiancheng An;Chao Xu;Yusha Liu;Lu Gan;L. Hanzo
  • 通讯作者:
    Jiancheng An;Chao Xu;Yusha Liu;Lu Gan;L. Hanzo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rob Maunder其他文献

Rob Maunder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rob Maunder', 18)}}的其他基金

Channel Decoder Architectures for Energy-Constrained Wireless Communication Systems: Holistic Approach
能量受限无线通信系统的信道解码器架构:整体方法
  • 批准号:
    EP/J015520/1
  • 财政年份:
    2012
  • 资助金额:
    $ 61.19万
  • 项目类别:
    Research Grant

相似国自然基金

强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
  • 批准号:
    11805229
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ACI-CDS&E: Highly Parallel Algorithms and Architectures for Convex Optimization for Realtime Embedded Systems (CORES)
合作研究:ACI-CDS
  • 批准号:
    1708299
  • 财政年份:
    2017
  • 资助金额:
    $ 61.19万
  • 项目类别:
    Standard Grant
Collaborative Research: ACI-CDS&E: Highly Parallel Algorithms and Architectures for Convex Optimization for Realtime Embedded Systems (CORES)
合作研究:ACI-CDS
  • 批准号:
    1709069
  • 财政年份:
    2017
  • 资助金额:
    $ 61.19万
  • 项目类别:
    Standard Grant
HIGHLY PARALLEL EDMAN SEQUENCING OF INDIVIDUAL PEPTIDE MOLECULES
单个肽分子的高度并行 EDMAN 测序
  • 批准号:
    8131684
  • 财政年份:
    2010
  • 资助金额:
    $ 61.19万
  • 项目类别:
HIGHLY PARALLEL EDMAN SEQUENCING OF INDIVIDUAL PEPTIDE MOLECULES
单个肽分子的高度并行 EDMAN 测序
  • 批准号:
    7944633
  • 财政年份:
    2010
  • 资助金额:
    $ 61.19万
  • 项目类别:
HIGHLY PARALLEL EDMAN SEQUENCING OF INDIVIDUAL PEPTIDE MOLECULES
单个肽分子的高度并行 EDMAN 测序
  • 批准号:
    8321082
  • 财政年份:
    2010
  • 资助金额:
    $ 61.19万
  • 项目类别:
Highly Parallel Supercomputing for Translational Research
用于转化研究的高度并行超级计算
  • 批准号:
    7497855
  • 财政年份:
    2008
  • 资助金额:
    $ 61.19万
  • 项目类别:
Highly Parallel Simulated Annealing Applied to the Optimization of Structural Systems
高度并行模拟退火应用于结构系统优化
  • 批准号:
    12650100
  • 财政年份:
    2000
  • 资助金额:
    $ 61.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
U.S.-France Cooperative Research: Highly Parallel Branch- and-Bound Algorithms for Solving Optimization Problems (with INRIA)
美法合作研究:解决优化问题的高度并行分支定界算法(与 INRIA 合作)
  • 批准号:
    0196185
  • 财政年份:
    1999
  • 资助金额:
    $ 61.19万
  • 项目类别:
    Standard Grant
Distributed Algorithms for Implementing Highly Reliable Distributed Systems
用于实现高可靠分布式系统的分布式算法
  • 批准号:
    10205218
  • 财政年份:
    1998
  • 资助金额:
    $ 61.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Set-Valued-Logic VLSI Architecture for Highly Parallel Computation
用于高度并行计算的集值逻辑 VLSI 架构
  • 批准号:
    10680329
  • 财政年份:
    1998
  • 资助金额:
    $ 61.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了