STATISTICS OF VARIATIONAL DATA ASSIMILATION IN CONTINUOUS TIME
连续时间变分数据同化统计
基本信息
- 批准号:EP/L012669/1
- 负责人:
- 金额:$ 10.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many natural phenomena manifest themselves as dynamical processes, that is processes evolving in time. Mathematical descriptions of such phenomena usually consist of equations describing temporal evolution, such as differential or difference equations; we will refer to them as dynamical models. Dynamical models have been conceived for the atmosphere, the sun, human crowd behaviour, traffic, and the stock market, just to name a few. A dynamical model allows to forecast the future behaviour of the real world dynamical process through numerical simulations (usually on a computer).However, in order to forecast the future behaviour of the dynamical process, its current state has to be known. Data assimilation, which is the main theme of this project, means to gather past and present observations of the dynamical process and estimate its current state or even whole trajectories in a dynamically consistent fashion. (E.g. data assimilation will not only result in a series of snapshots of the global wind fields; the evolution of these snapshots will be consistent with the physics describing air motion.) For this reason, data assimilation is a core step in forecasting with dynamical models.Data assimilation is carried out already in a wide range of applications, for example in weather forecasting. To some extent though, data assimilation rests on an ad--hoc methodology with only part of it being completely understood. A thorough understanding of data assimilation though is vital, as the performance and thus the value of every forecast depends crucially on the data assimilation.This project aims at providing data assimilation with further mathematical foundations. In particular, the following points will be investigated:* Dynamical models are often formulated in continuous time, and data assimilation is much nicer to analyse in continuous time than in discrete time, for mathematical reasons. In practice though, weather observations are sampled at discrete points in time, which seems to necessitate a discrete time framework for data assimilation. How do we take care of this important practical problem while at the same time rescuing the elegance and power of a continuous time approach? * Many data assimilation approaches provide solutions that appear reasonable, but the precise properties are not properly understood. A particularly pressing problem is the uncertainty associated with the estimated trajectories. Suppose the observations contain measurement error, this error will clearly feed through the entire data assimilation machinery onto the estimated trajectories. How do we take care of this?* The practitioneer needs a formalism to perform some quality control of her or his data assimilation results. The problem here is this: simply comparing the output of data assimilation with the observations is dangerous, since the observations have already been used to find the underlying trajectory, so this approach might give overly optimistic results. In statistics, this is known as ``in sample evaluation'', and several methods have been conceived to avoid them. In data assimilation, something similar is needed, although the problem is more complex as the observations are usually heavily dependent; a series of wind observations cannot be treated like a series of patients in medical trials. But building on previous work, a formalism will be developed allowing for more realistic performance assessment of data assimilation.
许多自然现象表现为动态过程,即随时间演变的过程。这些现象的数学描述通常由描述时间演化的方程组成,例如微分方程或差分方程;我们将它们称为动力学模型。动力学模型已经被设想用于大气、太阳、人类群体行为、交通和股票市场,仅举几例。动力学模型允许通过数值模拟(通常在计算机上)来预测真实的世界动力学过程的未来行为。然而,为了预测动力学过程的未来行为,必须知道其当前状态。数据同化是本项目的主题,它是指收集过去和现在对动力过程的观测,并以动态一致的方式估计其当前状态甚至整个轨迹。(E.g.数据同化不仅会产生一系列全球风场的快照;这些快照的演变将与描述空气运动的物理学相一致。因此,数据同化是动力模式预报的核心步骤,数据同化已经在广泛的应用中进行,例如在天气预报中。然而,在某种程度上,数据同化依赖于一种特别的方法,只有一部分被完全理解。然而,对数据同化的透彻理解是至关重要的,因为每个预测的性能和价值都取决于数据同化。本项目旨在为数据同化提供进一步的数学基础。特别是,以下几点将进行调查:* 动力学模型往往制定在连续时间,数据同化是更好地分析在连续时间比在离散时间,数学上的原因。然而,在实践中,天气观测是在离散的时间点采样的,这似乎需要一个离散的时间框架来进行数据同化。我们如何在处理这个重要的实际问题的同时,拯救连续时间方法的优雅和力量?* 许多数据同化方法提供的解决方案似乎是合理的,但精确的属性没有得到正确的理解。一个特别紧迫的问题是与估计轨迹相关的不确定性。假设观测值包含测量误差,则该误差将明显地通过整个数据同化机制反馈到估计轨迹上。我们如何处理这件事?*数据同化师需要一种形式化的方法来对他或她的数据同化结果进行质量控制。这里的问题是:简单地将数据同化的输出与观测结果进行比较是危险的,因为观测结果已经被用来寻找潜在的轨迹,因此这种方法可能会给出过于乐观的结果。在统计学中,这被称为“抽样评估”,并设想了几种方法来避免它们。在数据同化中,需要类似的东西,尽管问题更加复杂,因为观测通常是严重依赖的;一系列的风观测不能像医学试验中的一系列病人一样对待。但在以前工作的基础上,将制定一个形式主义,允许更现实的数据同化性能评估。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
What is the correct cost functional for variational data assimilation?
- DOI:10.1007/s00382-018-4146-y
- 发表时间:2018-04
- 期刊:
- 影响因子:4.6
- 作者:J. Bröcker
- 通讯作者:J. Bröcker
Resolution and discrimination-two sides of the same coin
- DOI:10.1002/qj.2434
- 发表时间:2015-04-01
- 期刊:
- 影响因子:8.9
- 作者:Broecker, Jochen
- 通讯作者:Broecker, Jochen
Existence and Uniqueness for Four-Dimensional Variational Data Assimilation in Discrete Time
离散时间四维变分数据同化的存在唯一性
- DOI:10.1137/16m1068918
- 发表时间:2017
- 期刊:
- 影响因子:2.1
- 作者:Bröcker J
- 通讯作者:Bröcker J
Assessing the performance of data assimilation algorithms which employ linear error feedback.
- DOI:10.1063/1.4965029
- 发表时间:2016-10
- 期刊:
- 影响因子:2.9
- 作者:Noeleene Mallia-Parfitt;J. Bröcker
- 通讯作者:Noeleene Mallia-Parfitt;J. Bröcker
Almost Sure Error Bounds for Data Assimilation in Dissipative Systems with Unbounded Observation Noise
具有无界观测噪声的耗散系统中数据同化的几乎确定的误差界限
- DOI:10.1137/17m1162305
- 发表时间:2018
- 期刊:
- 影响因子:2.1
- 作者:Oljaca L
- 通讯作者:Oljaca L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jochen Broecker其他文献
Jochen Broecker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分学习
- 批准号:
DP240102050 - 财政年份:2024
- 资助金额:
$ 10.33万 - 项目类别:
Discovery Projects
Non-Local Variational Problems with Applications to Data Science
非局部变分问题及其在数据科学中的应用
- 批准号:
2307971 - 财政年份:2023
- 资助金额:
$ 10.33万 - 项目类别:
Continuing Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 10.33万 - 项目类别:
Standard Grant
Applications of variational analysis in optimization and data science
变分分析在优化和数据科学中的应用
- 批准号:
RGPIN-2017-04035 - 财政年份:2022
- 资助金额:
$ 10.33万 - 项目类别:
Discovery Grants Program - Individual
Applications of variational analysis in optimization and data science
变分分析在优化和数据科学中的应用
- 批准号:
RGPIN-2017-04035 - 财政年份:2021
- 资助金额:
$ 10.33万 - 项目类别:
Discovery Grants Program - Individual
Quantitative estimates of discretisation and modelling errors in variational data assimilation for incompressible flows
不可压缩流变分数据同化中离散化和建模误差的定量估计
- 批准号:
EP/T033126/1 - 财政年份:2021
- 资助金额:
$ 10.33万 - 项目类别:
Research Grant
Hybrid Ensemble Variational Analysis of Polarimetric Radar Data to Improve Microphysical Parameterization and Short-term Weather Prediction
偏振雷达数据的混合集成变分分析,以改进微物理参数化和短期天气预报
- 批准号:
2136161 - 财政年份:2021
- 资助金额:
$ 10.33万 - 项目类别:
Continuing Grant
RI: Small: Deep Variational Data Compression
RI:小型:深度变分数据压缩
- 批准号:
2007719 - 财政年份:2020
- 资助金额:
$ 10.33万 - 项目类别:
Standard Grant
Variational Inference Sigma Point Filters for High-Dimensional Data
高维数据的变分推理西格玛点过滤器
- 批准号:
551089-2020 - 财政年份:2020
- 资助金额:
$ 10.33万 - 项目类别:
University Undergraduate Student Research Awards
Applications of variational analysis in optimization and data science
变分分析在优化和数据科学中的应用
- 批准号:
RGPIN-2017-04035 - 财政年份:2020
- 资助金额:
$ 10.33万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




