Quantitative estimates of discretisation and modelling errors in variational data assimilation for incompressible flows

不可压缩流变分数据同化中离散化和建模误差的定量估计

基本信息

  • 批准号:
    EP/T033126/1
  • 负责人:
  • 金额:
    $ 63.64万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The assimilation of data in computational models is a very importanttask in predictive science in the natural environment. In particularfor weather forcasting and biological flow problems such ascardiovascular flows, measured data must be used to complete themodel. More often than not the available data is not compatible withthe partial differential equations modelling the physicalphenomenon. The problem is ill-posed. Under certain mild assumption onthe model and measurement errors one can nevertheless use the modeltogether with the data to obtain computational predictions, typicallyusing Tikhonov regularisation to control instabilities due to theill-posed character. Two important tools for this are 3DVAR and4DVAR. These are variational data assimilation methods that, by andlarge, look for a solution minimising some norm of the differencebetween the solution to the measurements, or to a so called backgroundstate in case it exists, under the constraint of the physical pde model, in our case represented by a partial differential equation. The difference between 3DVAR and 4DVAR is that in 3DVAR data assimilation time evolution is not accounted for. It is therefore applicable only to stationary problem or to repeated assimilation of data ``snapshots'' followed by evolution. In 4DVAR data is expected to be distributed in space time and all space time data is used to produce the assimilated solution.-- In spite of the important literature on the topic of data assimilation using 3DVAR/4DVAR there appears to be no rigorous numerical analysis for two or three dimensional problems (for an exception in one space dimension see [JBFS15]) combining the effect on the solution of (a) modelling errors; (b) discretisation of the partial differential equations; (c) perturbation due to regularisation; (d) perturbations of the measured data.-- The aim of the present project is to provide sharp rigorous estimates for the effect on the approximate solution of points (a-d) above in the challenging case of incompressible flow problems. The derivation of such estimates will give a clear indication on whattype of regularisations are optimal and also what kind of quantities can reasonably be approximated given a set of measured data. Typically the tendency in computational methodsis to evolve from low order approaches to high resolution methods. Theambition is to design and analyse such high resolution methods forvariational data assimilation problems.
计算模式中数据的同化是自然环境预测科学中一个非常重要的问题。特别是对于天气预报和生物流动问题,如心血管流动,必须使用测量数据来完成模型。通常情况下,可用的数据与模拟物理现象的偏微分方程不兼容.这个问题是不适定的。在某些温和的假设下,对模型和测量误差,人们仍然可以使用模型与数据一起获得计算预测,通常使用Tikhonov正则化来控制由于不适定特性而导致的不稳定性。两个重要的工具是3DVAR和4DVAR。这些都是变分资料同化方法,大体上,寻找一个解决方案,最小化测量的解决方案之间的差异,或所谓的背景状态的情况下,它存在,在物理偏微分方程模型的约束下,在我们的情况下表示的偏微分方程。3DVAR和4DVAR的区别在于3DVAR资料同化没有考虑时间演化。因此,它只适用于固定的问题或重复同化的数据“快照”,然后演变。在4DVAR中,预计数据将分布在时空中,所有时空数据都用于产生同化解。尽管关于利用3DVAR/4DVAR进行资料同化的重要文献,但似乎没有对二维或三维问题进行严格的数值分析(关于一维空间中的例外情况,见[JBFS 15])结合对以下各项的解的影响:(a)建模误差;(B)偏微分方程的离散化;(c)正则化引起的扰动;(d)测量数据的扰动。本项目的目的是在不可压缩流动问题的挑战性情况下,对上述点(a-d)的近似解的影响提供精确的严格估计。这种估计的推导将清楚地表明哪种类型的调节是最佳的,以及在给定一组测量数据的情况下,什么样的量可以合理地近似。典型的趋势是在计算方法是发展从低阶方法的高分辨率方法。本文的目标是设计和分析这种高分辨率的变分同化方法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation
  • DOI:
    10.1137/20m1351230
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Ahmed;G. Barrenechea;E. Burman;Johnny Guzm'an;A. Linke;C. Merdon
  • 通讯作者:
    N. Ahmed;G. Barrenechea;E. Burman;Johnny Guzm'an;A. Linke;C. Merdon
Continuous interior penalty stabilization for divergence-free finite element methods
无散有限元方法的连续内罚稳定
The Unique Continuation Problem for the Heat Equation Discretized with a High-Order Space-Time Nonconforming Method
  • DOI:
    10.1137/22m1508637
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Burman;G. Delay;Alexandre Ern
  • 通讯作者:
    Erik Burman;G. Delay;Alexandre Ern
A mechanically consistent model for fluid-structure interactions with contact including seepage
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Burman其他文献

Extension operators for trimmed spline spaces
修剪样条空间的扩展算子
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization
基于不连续伽辽金时间离散化的波动方程的唯一延拓
  • DOI:
    10.48550/arxiv.2405.04615
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Burman;Janosch Preuss
  • 通讯作者:
    Janosch Preuss
A cut finite element method for elliptic bulk problems with embedded surfaces
  • DOI:
    10.1007/s13137-019-0120-z
  • 发表时间:
    2019-01-29
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Erik Burman;Peter Hansbo;Mats G. Larson;David Samvin
  • 通讯作者:
    David Samvin
Hybridized augmented Lagrangian methods for contact problems
用于接触问题的混合增广拉格朗日方法
The Augmented Lagrangian Method as a Framework for Stabilised Methods in Computational Mechanics

Erik Burman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Burman', 18)}}的其他基金

Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
  • 批准号:
    EP/X042650/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Research Grant
Computational methods for inverse problems subject to wave equations in heterogeneous media
异质介质中波动方程反问题的计算方法
  • 批准号:
    EP/V050400/1
  • 财政年份:
    2021
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Research Grant
Geometrically unfitted finite element methods for inverse identification of geometries and shape optimization
用于几何反演和形状优化的几何不拟合有限元方法
  • 批准号:
    EP/P01576X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
  • 批准号:
    EP/J002313/2
  • 财政年份:
    2013
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
  • 批准号:
    EP/J002313/1
  • 财政年份:
    2012
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Improving Estimates of Changing Firn Meltwater Storage and Flux in Temperate Glacier Systems
职业:改进对温带冰川系统中冰雪融水储存和通量变化的估计
  • 批准号:
    2239668
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Continuing Grant
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
  • 批准号:
    23K07844
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
  • 批准号:
    488763
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Operating Grants
FUTURE-FLOOD: New estimates of evolving UK flood risk for improved climate resilience
未来洪水:对英国不断变化的洪水风险的新估计,以提高气候适应能力
  • 批准号:
    NE/X014134/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Research Grant
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
  • 批准号:
    10797705
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
Topological Consequences of Distortion-type Estimates
失真型估计的拓扑后果
  • 批准号:
    2247469
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Continuing Grant
Methods for deterministic treatment effect estimates for clinical trials with missing data
缺失数据的临床试验的确定性治疗效果估计方法
  • 批准号:
    2886293
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Studentship
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
  • 批准号:
    2306143
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Standard Grant
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
  • 批准号:
    2308063
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Standard Grant
al-time epidemiological intelligence to inform control of SARS-CoV-2: improving the precision, validity, and granularity of estimates of the effective reproduction number in Canada
实时流行病学情报为 SARS-CoV-2 的控制提供信息:提高加拿大有效传染数估计的精确度、有效性和粒度
  • 批准号:
    495568
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了