Warwick EPSRC Symposium on Derived Categories and Applications

沃里克 EPSRC 派生类别及应用研讨会

基本信息

  • 批准号:
    EP/L018314/1
  • 负责人:
  • 金额:
    $ 20.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The planned 2014-2015 Warwick EPSRC symposium is a year long concentrated activity on the theory and applications of derived categories. The subject of derived categories emerged in the second half of the 20th century as a distillation of the ideas of homological algebra, which calculates invariants of a topological space such as its "number of n-dimensional holes". While more high brow and abstract than the more primary methods of attaching invariants to a mathematical or physical object, the derived category has a number of important advantages, allowing us to see so-called "quantum symmetries" of manifolds that are inaccessible to more conventional theories. They are thus an essential ingredient of attempts to understand the mathematics of physically important theories such as string theory, mirror symmetry and supersymmetry.Starting from the top, the more theoretical aspects covered during the year involve abstract notions such as higher category theory, DG enhancements and derived geometry. These are substantial generalisations of conventional geometry and category theory, and the theory is currently at the level of understanding and standardising the foundations of the new subject. This is an exciting stage in the development of a mathematical theory, but not one that can be convincingly explained in simple terms. Our symposium will run several schools and workshops at different levels expanding on these matters.At the other extreme, derived categories feed back into explicit calculations that can be applied to give useful results describing the properties of usual objects of algebra, geometry and theoretical physics. For example, derived categories have provided by far the best treatment of the McKay correspondence, that relates the representation theory of a finite subgroup G in SL(2,CC) or SL(3,CC) with the topology of a resolution of the orbifold quotient CC^n/G. In a similar vein, our symposium will include workshops studying derived category approaches to the study of different moduli spaces and their invariants (such as the classical moduli spaces of vector bundles, or of algebraic curves).In between these two extremes is a rich body of theories and problems in algebra, geometry and physics to which it is known or suspected that derived category methods can be applied. This includes issues arising from string theory, such as homological mirror symmetry, that works around the conjecture that the derived category mediates between the complex geometry of a Calabi-Yau 3-fold and the symplectic geometry of its mirror partner.
计划中的2014-2015年沃里克EPSRC研讨会是一个为期一年的集中活动的理论和应用的派生类别。导出范畴的主题出现在世纪后半叶,作为同调代数思想的升华,它计算拓扑空间的不变量,如它的“n维洞的数目”。虽然比将不变量附加到数学或物理对象上的更主要的方法更高雅和抽象,但导出的范畴具有许多重要的优点,使我们能够看到更传统理论无法达到的所谓的流形的“量子对称性”。因此,它们是试图理解物理上重要理论的数学的重要组成部分,如弦理论,镜像对称和超对称。从顶部开始,在这一年中涵盖的更多理论方面涉及抽象概念,如高级范畴理论,DG增强和派生几何。这些是传统几何和范畴论的实质性概括,该理论目前处于理解和标准化新学科基础的水平。这是数学理论发展的一个令人兴奋的阶段,但不是一个可以用简单的术语令人信服地解释的阶段。我们的研讨会将在不同层次上举办几个学校和研讨会,以扩展这些问题。在另一个极端,导出的范畴反馈到显式计算中,这些计算可以用来给出描述代数,几何和理论物理中常见对象的属性的有用结果。例如,导出范畴提供了迄今为止对麦凯对应的最好处理,它将SL(2,CC)或SL(3,CC)中有限子群G的表示理论与轨道商CC^n/G的分解的拓扑联系起来。同样,我们的研讨会将包括研讨会,研究不同模空间及其不变量(如向量丛或代数曲线的经典模空间)的导出范畴方法。在这两个极端之间是代数、几何和物理中丰富的理论和问题,已知或怀疑导出范畴方法可以应用于这些理论和问题。这包括弦理论中的问题,例如同调镜像对称,它围绕着这样一个猜想,即导出的范畴在卡-丘3重的复杂几何和它的镜像伙伴的辛几何之间起中介作用。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bar category of modules and homotopy adjunction for tensor functors
模块的 Bar 类别和张量函子的同伦附加
  • DOI:
    10.48550/arxiv.1612.09530
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anno Rina
  • 通讯作者:
    Anno Rina
Derived Reid's recipe for abelian subgroups of SL 3 (C)
SL 3 (C) 的阿贝尔子群的 Reid 配方
Spherical DG-functors
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miles Reid其他文献

Surfaces and Higher Dimensional Varieties 14
表面和更高维的种类 14
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jxx;S. Altınok;Gavin Brown;Miles Reid
  • 通讯作者:
    Miles Reid

Miles Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miles Reid', 18)}}的其他基金

Orbifolds and Birational Geometry
轨道折叠和双有理几何
  • 批准号:
    EP/H023267/1
  • 财政年份:
    2010
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
Warwick Symposium on Algebraic Geometry 2007-08
沃里克代数几何研讨会 2007-08
  • 批准号:
    EP/E060382/1
  • 财政年份:
    2007
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
  • 批准号:
    EP/X040844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
  • 批准号:
    EP/Z531182/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
  • 批准号:
    EP/V027395/2
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
  • 批准号:
    EP/Y032942/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了