Mathematical foundations of metamaterials: homogenisation, dissipation and operator theory

超材料的数学基础:均质化、耗散和算子理论

基本信息

  • 批准号:
    EP/L018802/1
  • 负责人:
  • 金额:
    $ 90.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

In order to understand how various physical media behave under specific conditions, for example: a) how the earth surface is deformed during an earthquake, or b) what image resolution one can achieve with a fibre-optic endoscope, mathematicians write differential equations (DEs) and study analytical properties of their solutions, which are then interpreted to draw conclusions about real-life objects. Part of this activity involves analysis of DEs that additionally depend on a parameter. In the above examples this parameter could be: a) the ratio of the size of the rock-forming crystals to the thickness of layers of rock in the ground, orb) the thickness-to-length ratio of the endoscope. The project will develop a new approach to the analysis of solutions of parameter-dependent DEs, based on recent achievements in the mathematical theory of ``operators'' and their spectra, which could roughly be thought of as the sets of the operator ``values''. In general, the spectrum of an operator is found in the two-dimensional-plane of ``complex'' numbers. However, for many operators representing DEs, the spectrum is a subset of a straight line in this plane. It turns out that considering such an operator as a member of a wider operator family, whose spectra are not necessarily situated on the same line, brings about a lot of technical benefits, in a similar way analysis in the complex plane helps understanding real numbers. In the last 50 years or so, many elegant mathematical results about operators (and about DEs as their particular case) have been obtained by using this analogy. We will exploit these results in order to improve our understanding of the behaviour of families of DEs. As a particular source of such families we will study equations representing composites, i.e. media that have several simpler constituent parts. Many objects around us are composites, for example, wood, porous rocks, foams, bubbly liquids, reinforced resins, polycrystal metals. Mathematical statements that we aim at will provide new information about such real-life objects concerning, for example, their acoustic properties, or the way in which they interact with an electromagnetic field. From the physics point of view, members of this wider operator family admit some dissipation (i.e. loss of energy) in comparison to the original ``loss-free'' setup. The project will provide a general mathematical framework for such dissipative extensions in the case of DEs describing composites, yielding a new analytic approach to the study of their effective properties.
为了了解各种物理介质在特定条件下的行为,例如:a)地球表面在地震期间如何变形,或B)使用光纤内窥镜可以实现什么样的图像分辨率,数学家编写微分方程(DE)并研究其解的分析性质,然后对其进行解释以得出关于现实生活对象的结论。该活动的一部分涉及对另外依赖于参数的DE的分析。在上述示例中,该参数可以是:a)岩石形成晶体的尺寸与地面中岩石层的厚度的比率,或b)内窥镜的厚度与长度的比率。该项目将根据最近在"算子“及其谱的数学理论方面取得的成就,开发一种新的方法来分析参数相关DE的解,这些谱可以粗略地被认为是算子”值“的集合。一般来说,一个算子的谱可以在复数的二维平面上找到。然而,对于许多代表DE的算子,谱是该平面中直线的子集。事实证明,将这样的算子视为更广泛的算子家族的成员,其谱不一定位于同一条线上,带来了很多技术上的好处,以类似的方式,在复平面上的分析有助于理解真实的数字。在过去的50年左右,许多优雅的数学结果有关的经营者(和有关DE作为其特殊情况)已获得通过使用这种类比。我们将利用这些结果,以提高我们的理解家庭的DE的行为。作为这些家庭的一个特殊来源,我们将研究代表复合材料的方程,即具有几个简单组成部分的介质。我们周围的许多物体都是复合材料,例如,木材,多孔岩石,泡沫,气泡液体,增强树脂,多晶金属。我们的目标是数学陈述将提供关于这些现实生活中的物体的新信息,例如,它们的声学特性,或者它们与电磁场相互作用的方式。从物理学的角度来看,这个更广泛的算子家族的成员承认与原始的“无损耗”设置相比有一些耗散(即能量损失)。该项目将提供一个通用的数学框架,这种耗散扩展的情况下,DE描述复合材料,产生一个新的分析方法来研究其有效的属性。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Norm-resolvent convergence of one-dimensional high-contrast periodic problems to a Kronig-Penney dipole-type model
一维高对比度周期性问题向 Kronig-Penney 偶极型模型的范数求解收敛
  • DOI:
    10.48550/arxiv.1510.03364
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cherednichenko K
  • 通讯作者:
    Cherednichenko K
Full two-scale asymptotic expansion and higher-order constitutive laws in the homogenisation of the system of Maxwell equations
麦克斯韦方程组均匀化中的全两尺度渐近展开和高阶本构定律
  • DOI:
    10.48550/arxiv.1509.01071
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cherednichenko Kirill D.
  • 通讯作者:
    Cherednichenko Kirill D.
Asymptotic behaviour of the spectra of systems of Maxwell equations in periodic composite media with high contrast
高对比度周期性复合介质中麦克斯韦方程组谱的渐近行为
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Cherednichenko.K
  • 通讯作者:
    Cherednichenko.K
Resolvent estimates in homogenisation of periodic problems of fractional elasticity
分数弹性周期问题均质化的求解估计
  • DOI:
    10.48550/arxiv.1706.02988
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cherednichenko K
  • 通讯作者:
    Cherednichenko K
High contrast homogenisation in nonlinear elasticity under small loads
小载荷下非线性弹性的高对比度均匀化
  • DOI:
    10.3233/asy-171430
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Cherdantsev M
  • 通讯作者:
    Cherdantsev M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kirill Cherednichenko其他文献

Dynamic Coexistence of Sexual and Asexual Invasion Fronts in a System of Integro-Difference Equations
  • DOI:
    10.1007/s11538-009-9416-8
  • 发表时间:
    2009-04-22
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Claudia Carrillo;Kirill Cherednichenko;Nicholas Britton;Michael Mogie
  • 通讯作者:
    Michael Mogie
Finite Difference Time Domain Method For Grating Structures
光栅结构的时域有限差分法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Antonakakis;Fadi Baïda;A. Belkhir;Kirill Cherednichenko;S. Cooper;Richard V. Craster;G. Demésy;John DeSanto;Gérard Granet;Evgeny Popov
  • 通讯作者:
    Evgeny Popov
Bloch-wave homogenization for spectral asymptotic analysis of the periodic Maxwell operator
用于周期性麦克斯韦算子谱渐近分析的布洛赫波均质化
  • DOI:
    10.1080/17455030701551930
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kirill Cherednichenko;S. Guenneau
  • 通讯作者:
    S. Guenneau

Kirill Cherednichenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kirill Cherednichenko', 18)}}的其他基金

Quantitative tools for upscaling the micro-geometry of resonant media
用于放大谐振介质微观几何形状的定量工具
  • 批准号:
    EP/V013025/1
  • 财政年份:
    2021
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Research Grant
Mathematical foundations of metamaterials: homogenisation, dissipation and operator theory
超材料的数学基础:均质化、耗散和算子理论
  • 批准号:
    EP/L018802/2
  • 财政年份:
    2014
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Fellowship
The mathematical analysis and applications of a new class of high-contrast phononic band-gap composite media
一类新型高对比度声子带隙复合介质的数学分析及应用
  • 批准号:
    EP/I018662/1
  • 财政年份:
    2011
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Research Grant
Variational convergence for nonlinear high-contrast homogenisation problems
非线性高对比度均匀化问题的变分收敛
  • 批准号:
    EP/F03797X/1
  • 财政年份:
    2008
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Standard Grant
Social Foundations of Cryptography
密码学的社会基础
  • 批准号:
    EP/X017524/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Research Grant
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
  • 批准号:
    EP/Y028872/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
  • 批准号:
    EP/Z531327/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Research Grant
Social foundations of cryptography
密码学的社会基础
  • 批准号:
    EP/X016226/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Research Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
  • 批准号:
    MR/X023583/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Fellowship
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 90.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了