Variational convergence for nonlinear high-contrast homogenisation problems

非线性高对比度均匀化问题的变分收敛

基本信息

  • 批准号:
    EP/F03797X/1
  • 负责人:
  • 金额:
    $ 18.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The proposed research relates to mathematical problems arising in the study of the behaviour of the so-called composite materials, which are heterogeneous mixtures of two or more constituent media. The practical importance of this subject lies in the facts that, on the one hand, a vast majority of materials currently used in industry are composites, and on the other hand, virtually all objects in the world around us (natural materials such as wood or rock, biological populations etc.) are heterogeneous media that can also be perceived as ``mixtures'' of a number of components. In a wider context, the results of the proposed work will be directly relevant to the development of our knowledge of what is generically called ``complex systems'', which can be loosely defined as systems with components whose individual properties differ from the properties of the system as a whole. In order to give a quantitative measure of the effect of ``mixing'', a modeller usually thinks of a length-scale associated with it, such as the average thickness of fibres in a plank of timber. It may happen that in order to get a closer match to reality, more than one length-scale has to be taken into account, for example in ply-wood there is also a length-scale of the average thickness of the individual layers. On the other hand, at the qualitative level one often speaks of a ``microstructure'' associated with a composite medium, meaning, roughly, the geometrical arrangement of the components. For example, this could be in the form of spherical inclusions distributed periodically or according to some other rule. If the ratio between the length-scales present in the composite is sufficiently small, which corresponds to the microstructure being ``sufficiently fine'', the physical properties of the medium are expected to be ``close'' to the properties of some homogeneous ``effective'' material. It is an interesting mathematical task to make this observation rigorous, which by now has been carried out for mixtures of materials whose properties ``do not differ too much'' in some sense. However, if the properties of inclusions in an otherwise homogeneous medium (``matrix'') are scaled in a certain ``critical'' way with the properties of the matrix, then the ``effective'' medium may possess a number of non-standard features, which are useful in applications. This is due to some sort of ``coupling'' between the different length-scales present, which may be said to ``interact'' with each other. For example, in the context of electromagnetic wave propagation, the spectrum of a fine mixture of this kind is shown to have ``lacunae'' (or ``gaps'') of ``forbidden'' frequencies, which get trapped by the microstructure. The rigorous proof of this fact is a rather neat piece of mathematics, which was devised only a few years ago. The related physical property is in the process of active implementation in manufacturing a new generation of optical transmission devices. The development of advanced mathematical tools that could capture the length-scale interactions of this kind is the wide aim of the project. More specifically, we will extend the techniques known among mathematicians as the Gamma-convergence in order to study materials with high contrast between the properties of the matrix and the inclusions. Using this extension we will give a description of the corresponding effective medium. Due to the high contrast in material properties, it will contain a system of equations that ``couple'' the behaviour at different lengthscales. We will then investigate one or two models in solid mechanics, using the developed theory, and make suggestions on their practical implementation.
拟议中的研究涉及到在研究所谓的复合材料的行为中出现的数学问题,复合材料是两种或多种成分介质的非均匀混合物。这一主题的实际重要性在于,一方面,目前工业中使用的绝大多数材料都是复合材料,另一方面,我们周围世界的几乎所有物体(天然材料,如木材或岩石,生物种群等)都是复合材料。是异质介质,也可以被视为许多成分的“混合物”。在更广泛的范围内,拟议工作的结果将直接关系到我们对一般所谓的"复杂系统“的知识的发展,复杂系统可以粗略地定义为具有其个别性质不同于整个系统性质的组成部分的系统。为了定量地衡量“混合”的效果,模型制作者通常会考虑与之相关的长度尺度,例如一块木板中纤维的平均厚度。为了更接近实际,可能需要考虑多个长度尺度,例如,在软木中,也存在单个层的平均厚度的长度尺度。另一方面,在定性层面上,人们经常谈到与复合介质相关的“微观结构”,大致意思是组分的几何排列。例如,这可以是周期性分布或根据某些其他规则分布的球形夹杂物的形式。如果复合材料中存在的长度尺度之间的比率足够小,这对应于微观结构"足够细“,则介质的物理性质预计将”接近“某些均匀"有效”材料的性质。使这种观察严格化是一项有趣的数学任务,到目前为止,已经对性质在某种意义上“差别不大”的材料的混合物进行了观察。然而,如果在一种均匀介质("基质“)中夹杂物的性质以某种"临界”方式与基质的性质成比例,那么“有效”介质可能具有许多非标准特征,这些特征在应用中是有用的。这是由于存在的不同长度尺度之间的某种"耦合“,可以说它们彼此”相互作用“。例如,在电磁波传播的背景下,这种精细混合物的频谱被证明具有“禁止”频率的“空隙”(或“间隙”),这些频率被微观结构捕获。这一事实的严格证明是一个相当简洁的数学,这是几年前设计的。相关的物理特性正在新一代光传输器件的制造中积极实现。开发能够捕捉这种长度-尺度相互作用的先进数学工具是该项目的广泛目标。更具体地说,我们将扩展数学家称为伽玛收敛的技术,以研究矩阵和夹杂物的属性之间具有高度对比的材料。利用这个推广,我们将给出相应的有效介质的描述。由于材料特性的高对比度,它将包含一个方程组,该方程组将不同长度尺度下的行为“耦合”起来。然后,我们将研究固体力学中的一个或两个模型,使用已开发的理论,并对其实际实施提出建议。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High contrast homogenisation in nonlinear elasticity under small loads
小载荷下非线性弹性的高对比度均匀化
  • DOI:
    10.3233/asy-171430
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Cherdantsev M
  • 通讯作者:
    Cherdantsev M
Two-Scale G-Convergence of Integral Functionals and its Application to Homogenisation of Nonlinear High-Contrast Periodic Composites
积分泛函的两尺度 G 收敛及其在非线性高对比度周期性复合材料均匀化中的应用
Bending of thin periodic plates
薄周期板的弯曲
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kirill Cherednichenko其他文献

Dynamic Coexistence of Sexual and Asexual Invasion Fronts in a System of Integro-Difference Equations
  • DOI:
    10.1007/s11538-009-9416-8
  • 发表时间:
    2009-04-22
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Claudia Carrillo;Kirill Cherednichenko;Nicholas Britton;Michael Mogie
  • 通讯作者:
    Michael Mogie
Bloch-wave homogenization for spectral asymptotic analysis of the periodic Maxwell operator
用于周期性麦克斯韦算子谱渐近分析的布洛赫波均质化
  • DOI:
    10.1080/17455030701551930
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kirill Cherednichenko;S. Guenneau
  • 通讯作者:
    S. Guenneau
Finite Difference Time Domain Method For Grating Structures
光栅结构的时域有限差分法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Antonakakis;Fadi Baïda;A. Belkhir;Kirill Cherednichenko;S. Cooper;Richard V. Craster;G. Demésy;John DeSanto;Gérard Granet;Evgeny Popov
  • 通讯作者:
    Evgeny Popov

Kirill Cherednichenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kirill Cherednichenko', 18)}}的其他基金

Quantitative tools for upscaling the micro-geometry of resonant media
用于放大谐振介质微观几何形状的定量工具
  • 批准号:
    EP/V013025/1
  • 财政年份:
    2021
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Research Grant
Mathematical foundations of metamaterials: homogenisation, dissipation and operator theory
超材料的数学基础:均质化、耗散和算子理论
  • 批准号:
    EP/L018802/1
  • 财政年份:
    2014
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Fellowship
Mathematical foundations of metamaterials: homogenisation, dissipation and operator theory
超材料的数学基础:均质化、耗散和算子理论
  • 批准号:
    EP/L018802/2
  • 财政年份:
    2014
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Fellowship
The mathematical analysis and applications of a new class of high-contrast phononic band-gap composite media
一类新型高对比度声子带隙复合介质的数学分析及应用
  • 批准号:
    EP/I018662/1
  • 财政年份:
    2011
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Research Grant

相似海外基金

Lp-Convergence in Nonlinear Harmonic Analysis
非线性谐波分析中的 Lp 收敛
  • 批准号:
    562822-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 18.72万
  • 项目类别:
    University Undergraduate Student Research Awards
Nonlinear Dynamics of Daily-weekly Boreal Spring InterTropical Convergence Zone (ITCZ) Shifts over the Eastern Pacific Ocean
东太平洋上空北春季热带辐合带(ITCZ)日周变化的非线性动力学
  • 批准号:
    1953944
  • 财政年份:
    2020
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Standard Grant
ECCS/CCSS: Neural Network Nonlinear Iterative LDPC Decoders with Guaranteed Error Performance and Fast Convergence
ECCS/CCSS:具有保证错误性能和快速收敛的神经网络非线性迭代 LDPC 解码器
  • 批准号:
    2027844
  • 财政年份:
    2020
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Standard Grant
Refinement of convergence theorems of nonlinear integrals with applications to the topological properties of function spaces determined by nonlinear integrals
非线性积分收敛定理的细化及其对非线性积分确定的函数空间拓扑性质的应用
  • 批准号:
    20K03695
  • 财政年份:
    2020
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A unified approach to the convergence theorems of nonlinear integrals containing decomposition integrals by the perturbative method
微扰法求解包含分解积分的非线性积分收敛定理的统一方法
  • 批准号:
    17K05293
  • 财政年份:
    2017
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of finite element methods for nonlinear problems and its error analysis
非线性问题的有限元方法研究及其误差分析
  • 批准号:
    17540120
  • 财政年份:
    2005
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust numerical methods for nonlinear equations
非线性方程的鲁棒数值方法
  • 批准号:
    16540092
  • 财政年份:
    2004
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precision Improvement of Numerical Simulation Including Iteration Processes for Nonlinear Evolution Equations
数值模拟精度的提高,包括非线性演化方程的迭代过程
  • 批准号:
    14540129
  • 财政年份:
    2002
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular Dynamic simulation on hydrodynamic instability of interface due to convergence shock and vortex dynamics
收敛激波和涡动力学引起的界面流体动力学不稳定性的分子动力学模拟
  • 批准号:
    14380211
  • 财政年份:
    2002
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Basic Research for a Singular Class of Measure-Valued Stochastic Processes and Associated Nonlinear Systems.
奇异类测值随机过程及相关非线性系统的基础研究。
  • 批准号:
    14540101
  • 财政年份:
    2002
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了