Towards quantum control of topological phases in mesoscopic superconductors
介观超导体拓扑相的量子控制
基本信息
- 批准号:EP/L020963/2
- 负责人:
- 金额:$ 58.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technologies which operate using quantum superposition and entanglement are set to revolutionise how the world stores, processes, and communicates information. A quantum computer is expected to improve the efficiency of cloud computing by calculating the optimal way to distribute computational tasks amongst classical computers. In materials science, the evolution of chemical reactions is also more efficiently simulated by a quantum computer so they are thus likely to aid developments in synthetic chemistry, where understanding the behaviour of large molecules will lead to smarter power-saving materials. Quantum simulators will also elucidate the role of quantum effects in biological processes related to energy harvesting such as photosynthesis, and inform the design of materials with exotic power-saving capabilities such as a high-temperature superconductivity. The ability for quantum computers to factor in polynomial time could also have an enormous impact on internet security, which currently relies on the near impossibility of factoring large numbers. At the heart of quantum computers are building blocks known as quantum bits, or "qubits", which physically comprise two states that can be manipulated into any quantum superposition. One of the challenges we face with building a quantum computer is preventing the environment from killing these fragile superpositions through intractable and unintentional interactions. Most qubits are based on familiar particles, such as electrons in a quantum dot, ions in an atom trap, or photons in a waveguide, and it is unclear what the ultimate limit will be in the race to optimise their performance. An alternative and elegant approach to this problem is to find a qubit that is intrinsically protected from interacting with the environment. One such qubit employs exotic particles, known as anyons, that can encode the state of a qubit non-locally. Weak interactions with the environment can never collapse its state, making it more robust as a quantum memory. The aim of this research is to pave the way towards quantum control of such qubits by developing devices and techniques for observing anyons that emerge from the collective motion of electrons in a two-dimensional gas in contact with a superconductor. Quite remarkably, particles with very similar properties are already available, though not yet detected, in a material as simple and famous as graphene. My strategy is to expose the presence of these particles by monitoring how single electrons interact with them in nanodevices. In the longer term I anticipate materials with stricter topological protection to be come available, and my aspiration is to use the techniques developed here to store, manipulate, and read out decoherence-free quantum information.
使用量子叠加和纠缠的技术将彻底改变世界存储、处理和交流信息的方式。量子计算机有望通过计算在经典计算机之间分配计算任务的最佳方式来提高云计算的效率。在材料科学领域,量子计算机也可以更有效地模拟化学反应的演变,因此它们可能有助于合成化学的发展,在合成化学中,理解大分子的行为将导致更智能的节能材料。量子模拟器还将阐明量子效应在生物过程中与能量收集(如光合作用)相关的作用,并为具有特殊节能能力(如高温超导性)的材料设计提供信息。量子计算机分解多项式时间的能力也可能对互联网安全产生巨大影响,目前互联网安全依赖于几乎不可能分解的大数。量子计算机的核心是被称为量子比特或“量子位”的构建块,它在物理上包含两种可以被操纵成任何量子叠加的状态。我们在建造量子计算机时面临的挑战之一是防止环境通过棘手和无意的相互作用杀死这些脆弱的叠加态。大多数量子位都是基于熟悉的粒子,比如量子点中的电子,原子阱中的离子,或者波导中的光子,目前还不清楚在优化它们性能的竞赛中,最终的极限是什么。解决这个问题的另一种优雅的方法是找到一个本质上不与环境相互作用的量子比特。其中一个量子比特使用了被称为任意子的奇异粒子,可以对量子比特的非局部状态进行编码。与环境的弱相互作用永远不会使其状态崩溃,使其作为量子存储器更加健壮。这项研究的目的是通过开发设备和技术来观察与超导体接触的二维气体中电子集体运动产生的任何子,从而为量子比特的量子控制铺平道路。值得注意的是,在像石墨烯这样简单而著名的材料中,虽然尚未检测到,但具有非常相似性质的粒子已经存在。我的策略是通过监测纳米器件中单个电子如何与它们相互作用来暴露这些粒子的存在。从长远来看,我预计具有更严格拓扑保护的材料将会出现,我的愿望是使用这里开发的技术来存储、操作和读出无退相干的量子信息。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integration of Topological Insulator Josephson Junctions in Superconducting Qubit Circuits.
- DOI:10.1021/acs.nanolett.1c04055
- 发表时间:2020-07
- 期刊:
- 影响因子:10.8
- 作者:T. Schmitt;M. Connolly;Michael Schleenvoigt;Chenlu Liu;O. Kennedy;Jos'e M. Ch'avez-Garcia;Abdur Rehman Jalil;B. Bennemann;S. Trellenkamp;F. Lentz;E. Neumann;T. Lindstrom;S. D. Graaf;E. Berenschot;N. Tas;G. Mussler;K. Petersson;D. Grutzmacher;P. Schuffelgen
- 通讯作者:T. Schmitt;M. Connolly;Michael Schleenvoigt;Chenlu Liu;O. Kennedy;Jos'e M. Ch'avez-Garcia;Abdur Rehman Jalil;B. Bennemann;S. Trellenkamp;F. Lentz;E. Neumann;T. Lindstrom;S. D. Graaf;E. Berenschot;N. Tas;G. Mussler;K. Petersson;D. Grutzmacher;P. Schuffelgen
Robust Majorana bound states in magnetic topological insulator nanoribbons with fragile chiral edge channels
- DOI:10.1103/physrevb.109.045138
- 发表时间:2023-02
- 期刊:
- 影响因子:3.7
- 作者:D. Burke;Dennis Heffels;K. Moors;P. Schuffelgen;D. Grutzmacher;M. Connolly
- 通讯作者:D. Burke;Dennis Heffels;K. Moors;P. Schuffelgen;D. Grutzmacher;M. Connolly
Microwave sensing of Andreev bound states in a gate-defined superconducting quantum point contact
门定义超导量子点接触中安德烈夫束缚态的微波传感
- DOI:10.1103/physrevresearch.4.023170
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Chidambaram V
- 通讯作者:Chidambaram V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Malcolm Connolly其他文献
Malcolm Connolly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Malcolm Connolly', 18)}}的其他基金
Quantum Science and Device Facility (QSDF)
量子科学与器件设施 (QSDF)
- 批准号:
EP/T031271/1 - 财政年份:2020
- 资助金额:
$ 58.48万 - 项目类别:
Research Grant
Towards quantum control of topological phases in mesoscopic superconductors
介观超导体拓扑相的量子控制
- 批准号:
EP/L020963/1 - 财政年份:2014
- 资助金额:
$ 58.48万 - 项目类别:
Fellowship
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
- 批准号:50906055
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
广义Besov函数类上的几个逼近特征
- 批准号:10926056
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
- 批准号:30772507
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
驻波场驱动的量子相干效应的研究
- 批准号:10774058
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
半导体物理中的非线性偏微分方程组
- 批准号:10541001
- 批准年份:2005
- 资助金额:4.0 万元
- 项目类别:专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
- 批准号:30570686
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
- 批准号:
2327247 - 财政年份:2024
- 资助金额:
$ 58.48万 - 项目类别:
Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
- 批准号:
DP240101494 - 财政年份:2024
- 资助金额:
$ 58.48万 - 项目类别:
Discovery Projects
Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
- 批准号:
23H01131 - 财政年份:2023
- 资助金额:
$ 58.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Control of topological quantum fields by a Moire metasurface
通过莫尔超表面控制拓扑量子场
- 批准号:
23K04567 - 财政年份:2023
- 资助金额:
$ 58.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control and thermodynamics of quantum systems
量子系统的控制和热力学
- 批准号:
2892547 - 财政年份:2023
- 资助金额:
$ 58.48万 - 项目类别:
Studentship
CAREER: Active Feedback to Control Dynamic Quantum Phases
职业:主动反馈控制动态量子相
- 批准号:
2238895 - 财政年份:2023
- 资助金额:
$ 58.48万 - 项目类别:
Continuing Grant
Generation and control of multi-photon quantum entangled states by pre-post selection
通过前后选择产生和控制多光子量子纠缠态
- 批准号:
22KJ1874 - 财政年份:2023
- 资助金额:
$ 58.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A Dry Electrode for Universal Accessibility to EEG
用于普遍获取脑电图的干电极
- 批准号:
10761609 - 财政年份:2023
- 资助金额:
$ 58.48万 - 项目类别:
Center: JILA-PFC: Comprehension and Control of Emerging Complexity at the Quantum Frontier
中心:JILA-PFC:量子前沿新兴复杂性的理解和控制
- 批准号:
2317149 - 财政年份:2023
- 资助金额:
$ 58.48万 - 项目类别:
Cooperative Agreement
Iron-Catalyzed Cross Coupling: Quantum Control on Multi-spin Pathways
铁催化交叉偶联:多自旋路径的量子控制
- 批准号:
23H01959 - 财政年份:2023
- 资助金额:
$ 58.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)