Rapid assembly of living micro-tissues with holographic optical tweezers; Cell 'LEGO' for regenerative medicine

用全息光镊快速组装活体微组织;

基本信息

  • 批准号:
    EP/L022095/1
  • 负责人:
  • 金额:
    $ 25.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The headline or sound bite for this project is 'laser-guided positioning of live cells and building of living micro-tissues - a new, cell scale manufacturing process for pharmaceutical testing and regenerative medicine'. The project showcases how scientists from seemingly unrelated backgrounds in tissue engineering and optical physics are collaborating to develop new healthcare technologies. The driver for the project is the increasing need to produce living human tissues, in the culture dish, with structures and functions that are as close as possible to those in the body and to use these in vitro tissues to more effectively test, develop and improve new and existing medicines and therapies. This approach can minimize use of animals in research and also reduce potentially costly, both health and economic, failures with new medicines.Our ability to achieve this ambitious goal of manufacturing living micro-tissues with lasers is underpinned by an instrument called an optical tweezers. Optical tweezers, invented in the 1980s exploit a phenomenon, whereby a tightly focused beam of laser light creates a localized force at its point of focus and has the effect of attracting small particles towards it - a so called optical trap or optical trapping. Suspending the particles within fluid gives a damping force producing a single (laser) beam optical trap that is stable in three dimensions (3D) - by moving the beam of laser light, the trapped particle can be also moved and controlled in multiple directions and subsequently positioned at defined points/locations with 'laser precision'. A range of different types and sizes of particles can be trapped and moved including, 2 micron (one 500th of a millimetre) glass beads to live human cells, which are typically 10 microns (one 100th of a millimetre) in size. Importantly, the properties of the laser, in terms of its power and wavelength are such that it causes little or no damage to cells and certainly in the time taken (seconds/minutes) to trap and move them.An evolution of this instrument is the holographic optical tweezers, where the single laser beam is split to create multiple traps, each capable of holding and moving particles. This is done using a spatial light modulator (SLM), a component typically found in an overhead and/or data projector. The SLM acts as a diffractive optical element, or hologram, and can be continuously updated via a computer program. Thus, multiple traps can be created in 3D and each trap independently controlled and positioned to create predetermined configurations and patterns. Using conventional microscope optics and a joy stick or iPad touch screen, the traps can be visualized in real time and controlled with the dexterity of a 'virtual hand'. Here, we will use this technology to exert hitherto unattainable levels of control over the movements and positioning of live cells, with the predefined precision akin to natural processes of tissue development and formation. With dynamic, precision control at the scale of the individual cell, we will show how holographic optical tweezers can be used to manufacture definable and tuneable, 3D micro-tissues; micro-tissue components, such as cells or small (~5 micron) polymer particles containing drugs, can be assembled together within minutes in a manner similar to building with 'cell LEGO'. With inherent control over manufacturing complexity we can deliver 'simple' 3D cell aggregates with applications in drug discovery and pharmaceutical testing, each aggregate consistent with the next, assembled with an exact number of cells and drug-loaded microparticles. This will be the focus of this phase of the project. Developing the project further we will also seek to push the boundaries for manufacture of more complex, bespoke structures that mimic specific tissues like liver, skin, heart etc and can be used to better understand disease processes and develop new therapies.
该项目的标题或声音片段是“活细胞的激光引导定位和活微组织的构建-一种用于药物测试和再生医学的新型细胞级制造工艺”。该项目展示了来自组织工程和光学物理领域看似不相关背景的科学家如何合作开发新的医疗保健技术。该项目的驱动力是越来越需要在培养皿中生产活的人体组织,其结构和功能尽可能接近体内的结构和功能,并使用这些体外组织更有效地测试,开发和改进新的和现有的药物和疗法。这种方法可以最大限度地减少研究中使用的动物,也可以减少新药失败的潜在代价,无论是健康还是经济方面。我们实现用激光制造活的微组织这一雄心勃勃的目标的能力是由一种称为光镊的仪器支撑的。光镊,发明于20世纪80年代,利用一种现象,即紧密聚焦的激光束在其焦点处产生局部力,并具有吸引小颗粒朝向其的效果-所谓的光阱或光阱。将颗粒悬浮在流体中产生阻尼力,产生在三维(3D)中稳定的单个(激光)光束光学陷阱-通过移动激光光束,捕获的颗粒也可以在多个方向上移动和控制,并且随后以“激光精度”定位在定义的点/位置。一系列不同类型和大小的颗粒可以被捕获和移动,包括2微米(500分之一毫米)的玻璃珠到活的人类细胞,这些细胞通常是10微米(100分之一毫米)的大小。重要的是,激光的功率和波长对细胞几乎没有损伤,而且捕获和移动细胞所需的时间(秒/分钟)也很短。全息光镊是这种仪器的一个发展,其中单个激光束被分裂成多个陷阱,每个陷阱都能够捕获和移动粒子。这是使用空间光调制器(SLM)完成的,空间光调制器是通常在顶置和/或数据投影仪中发现的组件。SLM充当衍射光学元件或全息图,并且可以通过计算机程序连续更新。因此,可以在3D中创建多个陷阱,并且每个陷阱被独立地控制和定位以创建预定的配置和图案。使用传统的显微镜光学和操纵杆或iPad触摸屏,陷阱可以在真实的时间可视化,并通过“虚拟手”的灵活性进行控制。在这里,我们将使用这项技术对活细胞的运动和定位施加迄今为止无法达到的控制水平,其预定义的精度类似于组织发育和形成的自然过程。通过在单个细胞尺度上进行动态精确控制,我们将展示如何使用全息光镊来制造可定义和可调谐的3D微组织;微组织组件,如细胞或含有药物的小(约5微米)聚合物颗粒,可以在几分钟内以类似于“细胞乐高”的方式组装在一起。通过对制造复杂性的固有控制,我们可以提供“简单”的3D细胞聚集体,用于药物发现和药物测试,每个聚集体与下一个聚集体一致,组装有精确数量的细胞和载药微粒。这将是该项目这一阶段的重点。进一步发展该项目,我们还将寻求推动制造更复杂的定制结构的界限,这些结构模仿肝脏,皮肤,心脏等特定组织,可用于更好地了解疾病过程并开发新疗法。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localized Induction of Gene Expression in Embryonic Stem Cell Aggregates Using Holographic Optical Tweezers to Create Biochemical Gradients.
Precision assembly of complex cellular microenvironments using holographic optical tweezers.
  • DOI:
    10.1038/srep08577
  • 发表时间:
    2015-02-26
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Kirkham GR;Britchford E;Upton T;Ware J;Gibson GM;Devaud Y;Ehrbar M;Padgett M;Allen S;Buttery LD;Shakesheff K
  • 通讯作者:
    Shakesheff K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lee Buttery其他文献

Lee Buttery的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

ENKD1在纺锤体定向中的作用及分子机制
  • 批准号:
    32000490
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
肌球蛋白18B通过影响微丝应力纤维组装调控肿瘤细胞迁移的机制研究
  • 批准号:
    31970660
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
嵌段共聚物多级自组装的多尺度模拟
  • 批准号:
    20974040
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
早型星系的测光研究
  • 批准号:
    10973011
  • 批准年份:
    2009
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
  • 批准号:
    20973136
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
功能有机配体新颖设计与有机金属超分子导向组装
  • 批准号:
    20772152
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
  • 批准号:
    2468773
  • 财政年份:
    2024
  • 资助金额:
    $ 25.94万
  • 项目类别:
    Studentship
Personalized neuroblastoma vaccines
个性化神经母细胞瘤疫苗
  • 批准号:
    10713548
  • 财政年份:
    2023
  • 资助金额:
    $ 25.94万
  • 项目类别:
HIV innate sensing in glial cells and inflammation
神经胶质细胞和炎症中的艾滋病毒先天感知
  • 批准号:
    10484086
  • 财政年份:
    2022
  • 资助金额:
    $ 25.94万
  • 项目类别:
HIV innate sensing in glial cells and inflammation
神经胶质细胞和炎症中的艾滋病毒先天感知
  • 批准号:
    10629392
  • 财政年份:
    2022
  • 资助金额:
    $ 25.94万
  • 项目类别:
Proton pump-initiated synthesis of a conductive polypyrrole for genetically targeted chemical assembly on living neurons
质子泵引发的导电聚吡咯合成,用于活体神经元上的基因靶向化学组装
  • 批准号:
    567675-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Oral microbial community structure and assembly: from molecule to microbiome
口腔微生物群落结构和组装:从分子到微生物组
  • 批准号:
    10278143
  • 财政年份:
    2021
  • 资助金额:
    $ 25.94万
  • 项目类别:
Oral microbial community structure and assembly: from molecule to microbiome
口腔微生物群落结构和组装:从分子到微生物组
  • 批准号:
    10660963
  • 财政年份:
    2021
  • 资助金额:
    $ 25.94万
  • 项目类别:
SynerGel: A Novel Tumor Microenvironment-Modulating Hydrogel for Local Immunotherapy
SynerGel:一种用于局部免疫治疗的新型肿瘤微环境调节水凝胶
  • 批准号:
    10821568
  • 财政年份:
    2021
  • 资助金额:
    $ 25.94万
  • 项目类别:
SynerGel: A Novel Tumor Microenvironment-Modulating Hydrogel for Local Immunotherapy
SynerGel:一种用于局部免疫治疗的新型肿瘤微环境调节水凝胶
  • 批准号:
    10615183
  • 财政年份:
    2021
  • 资助金额:
    $ 25.94万
  • 项目类别:
Oral microbial community structure and assembly: from molecule to microbiome
口腔微生物群落结构和组装:从分子到微生物组
  • 批准号:
    10447147
  • 财政年份:
    2021
  • 资助金额:
    $ 25.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了