Optimising laser driven electron nanobunches from ultrathin foil interactions: Coherent synchrotron emission and relativistic electron mirrors

通过超薄箔相互作用优化激光驱动电子纳米束:相干同步加速器发射和相对论电子镜

基本信息

  • 批准号:
    EP/L02327X/1
  • 负责人:
  • 金额:
    $ 89.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Summary of research for a general audience One of the most exciting frontiers of science is the study of phenomena that take place on the timescale of attoseconds (as, 10^-18 s). To imagine such an incredibly short period of time, consider that light travels from here to the moon in one second, but only travels 0.0003mm in one femtosecond (fs, 10^-15 s). To put it in context, that is about 1/300th the width of a human hair in 10^-15 s (or 1000 as). Attoseconds are the timescales on which atomic processes/transitions occur - for example, an electron circles the hydrogen atom in ~24 as (the so called 'atomic unit of time'). To investigate, and in future control, the dynamics of such ultrafast processes measurement tools of unprecedented quality and precision are required - pulses of light with attosecond duration. This is much shorter than a single cycle of any visible light wave (violet~1.3fs, red~2.5fs), requiring instead extreme-ultraviolet (XUV)/ X-ray radiation to be controlled with clinical accuracy to achieve ultrashort durations. However, the pay-off for this effort is substantial; researchers can investigate the microcosm with a degree of spatial clarity and on shorter time scales than previously possible, thus allowing them to see events that are ordinarily 'blurred' using conventional XUV/X-ray sources such as synchrotrons.Attosecond pulses must be synthesized using wavelengths shorter than those in the visible region of the spectrum and therein lies a significant problem - wavelengths shorter than the visible spectrum i.e. ultraviolet and X-rays, are strongly absorbed in most materials. It is therefore impossible to build an attosecond laser using conventional laser building techniques. Instead next generation methods are required. Two principle media are currently being studied at laser laboratories around the world - intense laser-gas interactions and relativistic laser plasmas formed using solid density targets - for the production of attosecond pulses.In the proposed research we focus on the second medium - relativistic laser plasma. The underlying mechanism under investigation for the generation of intense attosecond pulses is the production of relativistic electron nanobunches during high power optical laser interactions with ultrathin carbon foils. This novel concept is based on our recent work showing that dense bunches of electrons with sub 10nm scale (nm = nanometer = 10^-9m) can be formed and rapidly accelerated on the front surface by the relativistically intense driving laser field and subsequently emerge from the rear surface of ultrathin carbon foils. Two resulting mechanisms will be studied in detail in this research - Coherent Synchrotron Emission (CSE) and Relativistic Electron Mirrors (REM). Only recently demonstrated, CSE and REM offer a novel window onto the relativistic laser plasma interaction and our work will not only reveal the microscopic dynamics of these mechanisms but also show a direct path to the generation of bright attosecond pulses.
科学最令人兴奋的前沿领域之一是对发生在阿秒(as,10^-18 s)时间尺度上的现象的研究。为了想象这样一个难以置信的短时间段,考虑光从这里到月球在一秒内传播,但在一飞秒(fs,10^-15 s)内仅传播0.0003 mm。在上下文中,这大约是10^-15 s(或1000 as)内人类头发宽度的1/300。阿秒是原子过程/跃迁发生的时间尺度-例如,一个电子在~24 as(所谓的“原子时间单位”)内绕氢原子一周。为了调查,并在未来的控制,这种超快过程的动态测量工具的前所未有的质量和精度是必需的-阿秒持续时间的光脉冲。这比任何可见光波(紫色~1.3fs,红色~2.5fs)的单个周期短得多,需要以临床精度控制极紫外(XUV)/X射线辐射以实现超短持续时间。然而,这一努力的回报是巨大的;研究人员可以在比以前可能的更短的时间尺度上以一定程度的空间清晰度来研究微观世界,因此使他们能够看到通常使用常规XUV/X射线源(如同步加速器)“模糊”的事件。阿秒脉冲必须使用比光谱的可见光区域中的波长短的波长来合成,这存在一个显著的问题-短于可见光谱的波长,即紫外线和X射线,在大多数材料中被强烈吸收。因此,不可能使用传统的激光器构建技术来构建阿秒激光器。需要下一代的方法。目前世界各地的激光实验室正在研究产生阿秒脉冲的两种主要介质--强激光-气体相互作用和使用固体密度靶形成的相对论激光等离子体。强阿秒脉冲产生的潜在机制是在高功率光激光与碳箔相互作用过程中产生相对论电子纳米束。这一新概念是基于我们最近的工作,即在相对论强驱动激光场作用下,可以在碳箔的前表面形成亚10 nm尺度(nm = nanometer = 10^-9 m)的密集电子束团,并使其快速加速,随后从碳箔的后表面射出。本研究将详细研究两种产生机制-相干同步辐射(CSE)和相对论电子镜(REM)。最近才证实,CSE和REM提供了一个新的窗口相对论激光等离子体相互作用,我们的工作不仅揭示了这些机制的微观动力学,但也显示了一个直接的路径产生明亮的阿秒脉冲。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma
通过近临界密度等离子体产生的超重力电子增强激光驱动离子加速
  • DOI:
    10.48550/arxiv.1710.09855
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bin J
  • 通讯作者:
    Bin J
Laser-Wakefield Electron Beams as Drivers of High-Quality Positron Beams and Inverse-Compton-Scattered Photon Beams
  • DOI:
    10.3389/fphy.2019.00049
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    A. Alejo;G. M. Samarin;J. Warwick;G. Sarri
  • 通讯作者:
    A. Alejo;G. M. Samarin;J. Warwick;G. Sarri
Current and planned future experiments with relativistic high harmonic generation using the JETI200 laser
当前和计划的未来使用 JETI200 激光器进行相对论高次谐波发生的实验
Effects of COVID-19 lockdown on the observed density of coral reef fish along coastal habitats of Moorea, French Polynesia.
COVID-19 封锁对法属波利尼西亚莫雷阿岛沿海栖息地珊瑚礁鱼类观测密度的影响。
  • DOI:
    10.1007/978-3-319-19521-6_16
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Bertucci F
  • 通讯作者:
    Bertucci F
Ultrafast dynamics and evolution of ion-induced opacity in transparent dielectrics
  • DOI:
    10.1088/1367-2630/abbae8
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Coughlan, M.;Donnelly, H.;Dromey, B.
  • 通讯作者:
    Dromey, B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendan Hugh Dromey其他文献

Brendan Hugh Dromey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendan Hugh Dromey', 18)}}的其他基金

Ultrafast Nanodosimetry - the role of the nanoscale in radiation interactions in matter.
超快纳米剂量测定法 - 纳米尺度在物质辐射相互作用中的作用。
  • 批准号:
    EP/W017245/1
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Research Grant
Ultrafast laser-driven ion interactions in matter: Evolving dose distribution at the nanoscale and nonlinear response
超快激光驱动离子在物质中的相互作用:纳米级剂量分布的演变和非线性响应
  • 批准号:
    EP/P016960/1
  • 财政年份:
    2017
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Research Grant
Novel quasi phase matching of high harmonic generation via advanced dual gas multi jet targets
通过先进的双气体多射流靶产生高次谐波的新型准相位匹配
  • 批准号:
    EP/J002976/1
  • 财政年份:
    2012
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Research Grant
Intense attoscience: A new frontier in ultrafast research - Relativistic plasmas and high harmonic generation
密集的原子科学:超快研究的新前沿——相对论等离子体和高次谐波的产生
  • 批准号:
    EP/H003592/1
  • 财政年份:
    2009
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Fellowship

相似国自然基金

基于激光与管电极电解同步复合(Laser-STEM)的低损伤大深度小孔加工技术基础研究
  • 批准号:
    51905525
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
长链非编码RNA lnc-LASER通过HNF-1α-PCSK9 调控肝脏胆固醇平衡的机制研究
  • 批准号:
    81600343
  • 批准年份:
    2016
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目
基于康普顿散射的高精度束流截面测量方法的研究
  • 批准号:
    11175196
  • 批准年份:
    2011
  • 资助金额:
    72.0 万元
  • 项目类别:
    面上项目
全固态钠黄光激光器波长调控与锁定技术研究
  • 批准号:
    60508013
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
化石硅藻微构造与古环境和古气候研究
  • 批准号:
    40442004
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Targeting neuronal transport to ameliorate vincristine neurotoxicity
靶向神经元运输以改善长春新碱神经毒性
  • 批准号:
    10736789
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
CAREER: Leading to Accelerated Discoveries in High-Throughput Ultrafast Laser-Driven Processing of High Entropy Alloy Nanoparticles
职业:加速高通量超快激光驱动高熵合金纳米粒子加工的发现
  • 批准号:
    2237820
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Standard Grant
Resonance absorption analysis using laser-driven neutron source
使用激光驱动中子源进行共振吸收分析
  • 批准号:
    23KJ1466
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Laser-driven system for the generation of coherent extreme-ultraviolet radiation
用于产生相干极紫外辐射的激光驱动系统
  • 批准号:
    527851411
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Major Research Instrumentation
Laboratory Studies of Laser-Driven, Ion-Scale Mini-Magnetospheres on the LAPD
洛杉矶警察局激光驱动离子级微型磁层的实验室研究
  • 批准号:
    2320946
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Standard Grant
Novel laser-driven, short-wavelength light sources
新型激光驱动的短波长光源
  • 批准号:
    2892579
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Studentship
Developing an electrically-driven organic semiconductor laser with field-effect transistor structure
开发具有场效应晶体管结构的电驱动有机半导体激光器
  • 批准号:
    23KF0101
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a mid-IR laser driven X-ray spectroscopic system for zeptosecond atomic, molecular, particle physics
开发用于泽秒原子、分子、粒子物理的中红外激光驱动 X 射线光谱系统
  • 批准号:
    23H01877
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on low divergence laser-driven ion beam generation using capillary array target
利用毛细管阵列靶产生低发散激光驱动离子束的研究
  • 批准号:
    23K11716
  • 财政年份:
    2023
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High repetition rate optimisation and control of laser-driven radiation sources
激光驱动辐射源的高重复率优化和控制
  • 批准号:
    2755548
  • 财政年份:
    2022
  • 资助金额:
    $ 89.18万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了