Ultrafast laser-driven ion interactions in matter: Evolving dose distribution at the nanoscale and nonlinear response

超快激光驱动离子在物质中的相互作用:纳米级剂量分布的演变和非线性响应

基本信息

  • 批准号:
    EP/P016960/1
  • 负责人:
  • 金额:
    $ 110.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

In physics, scaling laws provide a dual function. First, they can reveal the underlying physical mechanisms that govern a system by establishing how the system responds to changes or perturbations. This is particularly true of nonlinear scaling laws where small changes in an input perturbation can lead to dramatic changes in the response of the system. Secondly scaling laws provide researchers with a tool that they can use to predict how a system will evolve for a given set of input parameters. This is a crucial step towards providing highly-targeted, cutting-edge applications. It is within this framework that we propose to study the ultrafast dynamics that result from ion interactions in matter to determine how the characteristic response of the medium scales with the incident ion flux. To study any ultrafast process directly it is critical that the perturbation causing the system to change is significantly shorter than the natural recovery time of the system. If the perturbation is significantly longer that this recovery there will be repeated cycles of excitation and relaxation within a single interaction. This inhibits the ability to extract fundamental information about the system without complicated approximations and assumptions. Unfortunately, to date, this has been the overriding problem for the study of ion interactions in matter. The ion pulses that have been available from large accelerator facilities have been 100's of picoseconds in duration which is significantly longer than the femtosecond and few picosecond characteristic recovery times of matter in response to irradiation. Accordingly, existing experimental results relating to the earliest accessible stages of ion matter interactions have prohibitively large associated uncertainties. Our approach overcomes this issue by generating ultrafast pulses of ions using laser driven ion accelerators. This performance will allow the stopping of energetic ions (> 1 MeV/nucleon) in matter to be studied on femtosecond and picosecond timescales. We will use this capability to understand how the resulting pathways to equilibrium can be controlled by varying the incident flux of ions and investigate the new possibilities this offers for advanced applications in both radiation chemistry and hadrontherapy. The Centre for Plasma Physics in Queen's University Belfast is currently constructing the world's highest energy few-optical-cycle laser system, TARANIS-X, due to come online in late 2016. This unique environment will allow us to generate the shortest pulses of ions produced in the laboratory to date. With this state of the art facility it will be possible to test, in real time, the fundamental limits of ion interactions in matter. Understanding this behaviour is a key goal of this research. In particular extending these experiments to ion interactions in water will allow us to investigate the potential for new modalities of dose delivery during hadron (or ion beam) therapy. This is because water makes up over >70% of human cells and so it makes for an ideal system in which to study the effects of ionising radiation in the human body. Finally, one of the key motivators for this proposal is the indication of nonlinear response with respect to ion flux in low temporal resolution experiments performed to support the scientific case for this work. Together with our international partners in Germany (Munich) and the U.S. (Texas) we will investigate multiple different interaction regimes to determine the scaling of this nonlinear response and, in partnership with the GEANT4 DNA collaboration, we will develop numerical approaches to form a clear understanding of the scaling law (or laws) that governs it.
在物理学中,标度定律提供了双重功能。首先,它们可以通过建立系统如何响应变化或扰动来揭示控制系统的潜在物理机制。这是特别真实的非线性标度律,在输入扰动的微小变化可能导致系统的响应的巨大变化。其次,标度律为研究人员提供了一种工具,他们可以用它来预测一个系统在给定的输入参数下将如何演化。这是朝着提供高度针对性的尖端应用迈出的关键一步。正是在这个框架内,我们建议研究的超快动力学,从物质中的离子相互作用,以确定如何与入射离子通量的介质尺度的特征响应。 为了直接研究任何超快过程,使系统发生变化的扰动明显短于系统的自然恢复时间是至关重要的。如果扰动比这个恢复时间长得多,那么在一次相互作用中就会有重复的激发和弛豫循环。这抑制了在没有复杂的近似和假设的情况下提取关于系统的基本信息的能力。不幸的是,到目前为止,这一直是研究物质中离子相互作用的首要问题。已经从大型加速器设施获得的离子脉冲的持续时间为100皮秒,其显著长于物质响应于照射的飞秒和几皮秒特征恢复时间。因此,与离子物质相互作用的最早可达阶段有关的现有实验结果具有过大的相关不确定性。我们的方法通过使用激光驱动离子加速器产生超快离子脉冲来克服这个问题。这种性能将允许在飞秒和皮秒时间尺度上研究物质中高能离子(> 1 MeV/核子)的停止。我们将利用这种能力来了解如何通过改变离子的入射通量来控制由此产生的平衡途径,并研究这为辐射化学和强子疗法的高级应用提供的新的可能性。贝尔法斯特女王大学等离子体物理中心目前正在建造世界上能量最高的少光周期激光系统TARANIS-X,预计将于2016年底上线。这种独特的环境将使我们能够产生迄今为止在实验室中产生的最短的离子脉冲。有了这种最先进的设备,就有可能在真实的时间内测试物质中离子相互作用的基本极限。了解这种行为是这项研究的一个关键目标。特别是将这些实验扩展到水中的离子相互作用,将使我们能够研究强子(或离子束)治疗期间剂量输送的新模式的潜力。这是因为水占人体细胞的70%以上,因此它是研究电离辐射对人体影响的理想系统。最后,这一建议的关键动机之一是在低时间分辨率的实验,以支持这项工作的科学情况下,离子通量的非线性响应的指示。与我们在德国(慕尼黑)和美国(得克萨斯州)的国际合作伙伴一起,我们将研究多种不同的相互作用机制,以确定这种非线性响应的缩放,并与GEANT 4 DNA合作,我们将开发数值方法,以形成对其管理的缩放定律(或定律)的清晰理解。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Current and planned future experiments with relativistic high harmonic generation using the JETI200 laser
当前和计划的未来使用 JETI200 激光器进行相对论高次谐波发生的实验
Plasma optics promise exawatt performance
等离子光学器件有望实现艾瓦性能
  • DOI:
    10.1038/s41566-023-01334-6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Dromey B
  • 通讯作者:
    Dromey B
Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma
通过近临界密度等离子体产生的超重力电子增强激光驱动离子加速
  • DOI:
    10.48550/arxiv.1710.09855
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bin J
  • 通讯作者:
    Bin J
The Role of Picosecond Scale 'Coherent' Contrast in Dense Electron Nanobunch Formation for Laser-driven Coherent Synchrotron Emission
皮秒级“相干”对比度在激光驱动相干同步加速器发射的致密电子纳米束形成中的作用
  • DOI:
    10.1364/nlo.2017.nth3a.2
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dromey B
  • 通讯作者:
    Dromey B
Attosecond pulse isolation via intense laser field synthesis
通过强激光场合成进行阿秒脉冲隔离
  • DOI:
    10.1103/physrevresearch.6.l012020
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Fitzpatrick C
  • 通讯作者:
    Fitzpatrick C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendan Hugh Dromey其他文献

Brendan Hugh Dromey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendan Hugh Dromey', 18)}}的其他基金

Ultrafast Nanodosimetry - the role of the nanoscale in radiation interactions in matter.
超快纳米剂量测定法 - 纳米尺度在物质辐射相互作用中的作用。
  • 批准号:
    EP/W017245/1
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Research Grant
Optimising laser driven electron nanobunches from ultrathin foil interactions: Coherent synchrotron emission and relativistic electron mirrors
通过超薄箔相互作用优化激光驱动电子纳米束:相干同步加速器发射和相对论电子镜
  • 批准号:
    EP/L02327X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Research Grant
Novel quasi phase matching of high harmonic generation via advanced dual gas multi jet targets
通过先进的双气体多射流靶产生高次谐波的新型准相位匹配
  • 批准号:
    EP/J002976/1
  • 财政年份:
    2012
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Research Grant
Intense attoscience: A new frontier in ultrafast research - Relativistic plasmas and high harmonic generation
密集的原子科学:超快研究的新前沿——相对论等离子体和高次谐波的产生
  • 批准号:
    EP/H003592/1
  • 财政年份:
    2009
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Fellowship

相似国自然基金

基于激光与管电极电解同步复合(Laser-STEM)的低损伤大深度小孔加工技术基础研究
  • 批准号:
    51905525
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
长链非编码RNA lnc-LASER通过HNF-1α-PCSK9 调控肝脏胆固醇平衡的机制研究
  • 批准号:
    81600343
  • 批准年份:
    2016
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目
基于康普顿散射的高精度束流截面测量方法的研究
  • 批准号:
    11175196
  • 批准年份:
    2011
  • 资助金额:
    72.0 万元
  • 项目类别:
    面上项目
全固态钠黄光激光器波长调控与锁定技术研究
  • 批准号:
    60508013
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
化石硅藻微构造与古环境和古气候研究
  • 批准号:
    40442004
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Targeting neuronal transport to ameliorate vincristine neurotoxicity
靶向神经元运输以改善长春新碱神经毒性
  • 批准号:
    10736789
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
CAREER: Leading to Accelerated Discoveries in High-Throughput Ultrafast Laser-Driven Processing of High Entropy Alloy Nanoparticles
职业:加速高通量超快激光驱动高熵合金纳米粒子加工的发现
  • 批准号:
    2237820
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Standard Grant
Laser-driven system for the generation of coherent extreme-ultraviolet radiation
用于产生相干极紫外辐射的激光驱动系统
  • 批准号:
    527851411
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Major Research Instrumentation
Resonance absorption analysis using laser-driven neutron source
使用激光驱动中子源进行共振吸收分析
  • 批准号:
    23KJ1466
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Laboratory Studies of Laser-Driven, Ion-Scale Mini-Magnetospheres on the LAPD
洛杉矶警察局激光驱动离子级微型磁层的实验室研究
  • 批准号:
    2320946
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Standard Grant
Novel laser-driven, short-wavelength light sources
新型激光驱动的短波长光源
  • 批准号:
    2892579
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Studentship
Developing an electrically-driven organic semiconductor laser with field-effect transistor structure
开发具有场效应晶体管结构的电驱动有机半导体激光器
  • 批准号:
    23KF0101
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a mid-IR laser driven X-ray spectroscopic system for zeptosecond atomic, molecular, particle physics
开发用于泽秒原子、分子、粒子物理的中红外激光驱动 X 射线光谱系统
  • 批准号:
    23H01877
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on low divergence laser-driven ion beam generation using capillary array target
利用毛细管阵列靶产生低发散激光驱动离子束的研究
  • 批准号:
    23K11716
  • 财政年份:
    2023
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High repetition rate optimisation and control of laser-driven radiation sources
激光驱动辐射源的高重复率优化和控制
  • 批准号:
    2755548
  • 财政年份:
    2022
  • 资助金额:
    $ 110.77万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了