Anatomy-Driven Brain Connectivity Mapping

解剖驱动的大脑连接图谱

基本信息

  • 批准号:
    EP/L023067/1
  • 负责人:
  • 金额:
    $ 55.14万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The connectome, the comprehensive map of neural connections in the human brain, is unique in every individual. Even identical twins differ at the level of neural connectivity. Mapping the human connectome and its variability across individuals is essential in getting insight into the unknown cognitive aspects of brain function, but also into identifying dysfunctional features of the diseased brain. For these reasons, understanding the human brain, its organisation and ultimately its function, is amongst the key scientific challenges of the 21st century. Magnetic resonance imaging (MRI) has revolutionised neuroscience by uniquely allowing both brain anatomy and function to be probed in living humans. Even if MRI allows only macroscopic features to be recovered (at the level of relatively large tissue regions, rather than individual neuronal cells), its non-invasive and in-vivo application has opened tremendous possibilities for brain research. Diffusion-weighted MRI (dMRI) is a particular modality that uniquely allows the mapping of fibre bundles, the underlying connection pathways that mediate information flow between different brain regions. The connection mapping is performed indirectly by processing dMRI images via computational algorithms referred to as tractography. Tractography has already provided fundamental new insights into brain anatomy. The importance of brain connectivity to our understanding of the brain along, with the great potential revealed by tractography algorithms have led to large initiatives from both sides of the Atlantic. These utilise dMRI to collect state-of-the-art datasets of the healthy adult and the developing brain and map the structural connectome through tractography. They include the $30M NIH Human Connectome Project, the 15M Euros ERC Developing Human Connectome Project and the £30M UK funded Biobank Imaging. However, without state-of-the-art analysis methods, and new ways of analysing dMRI data, researchers will fail to get the most out of this vast wealth of upcoming data. In this project, we propose new frameworks for tractography methods centred on neuroanatomy. We particularly focus on problems arising from ambiguous mapping of complex geometries (which are very common in the brain) to the dMRI measurements. These pose significant limits to the accuracy of existing approaches. We propose wholesale changes through computational and algorithmic solutions that will allow connections to be measured in-vivo with unprecedented detail, whole brain organization to be studied at a much finer scale and anatomical features -invisible to existing techniques- to be revealed. These advances will open new possibilities for neuroanatomical studies, but also set the foundations for new basic research in MRI processing and connectivity mapping. We will illustrate their potential using compelling demonstrator applications from basic and clinical neuroscience, including the assessment of benefits from using the new technology in assisting neurosurgical planning.
连接体是人类大脑中神经连接的综合图谱,每个人都是独一无二的。即使是同卵双胞胎,在神经连接的水平上也不同。绘制人类连接体及其在不同个体之间的变异性图对于洞察大脑功能的未知认知方面至关重要,也对于识别疾病大脑的功能障碍特征至关重要。出于这些原因,了解人脑及其组织和最终的功能是21世纪的关键科学挑战之一。核磁共振成像(MRI)使神经科学发生了革命性的变化,它独特地允许在活人身上探索大脑解剖和功能。即使MRI只允许恢复宏观特征(在相对较大的组织区域水平上,而不是单个神经细胞),其非侵入性和体内应用也为脑研究打开了巨大的可能性。弥散加权磁共振成像(DMRI)是一种特殊的方式,它唯一地允许对纤维束进行映射,纤维束是在不同大脑区域之间调节信息流的潜在连接路径。连接映射是通过经由称为轨迹图的计算算法处理dMRI图像来间接执行的。脑束造影术已经为大脑解剖学提供了基本的新见解。大脑连接对我们理解大脑的重要性,以及跟踪成像算法所揭示的巨大潜力,导致了大西洋两岸的重大倡议。他们利用dMRI来收集健康成年人和发育中的大脑的最先进的数据集,并通过纤维束成像绘制结构连接体的地图。其中包括耗资3000万美元的NIH人类连接体项目,1500万欧元的ERC开发人类连接体项目,以及英国资助的3000万GB的生物库成像。然而,如果没有最先进的分析方法和分析dMRI数据的新方法,研究人员将无法最大限度地利用即将到来的海量数据。在这个项目中,我们提出了以神经解剖学为中心的纤维束成像方法的新框架。我们特别关注从复杂几何图形(这在大脑中非常常见)到dMRI测量的模糊映射所产生的问题。这对现有方法的准确性构成了很大的限制。我们建议通过计算和算法解决方案进行大规模改变,允许以前所未有的细节在体内测量连接,以更精细的规模研究整个大脑组织,并揭示现有技术看不见的解剖特征。这些进展将为神经解剖学研究开辟新的可能性,也为磁共振成像处理和连接映射的新基础研究奠定基础。我们将使用基础和临床神经科学中引人注目的演示应用来说明它们的潜力,包括评估使用新技术辅助神经外科计划的好处。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease.
  • DOI:
    10.1016/j.neuroimage.2017.07.012
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Akram H;Sotiropoulos SN;Jbabdi S;Georgiev D;Mahlknecht P;Hyam J;Foltynie T;Limousin P;De Vita E;Jahanshahi M;Hariz M;Ashburner J;Behrens T;Zrinzo L
  • 通讯作者:
    Zrinzo L
A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks.
  • DOI:
    10.1371/journal.pcbi.1006007
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Abeysuriya RG;Hadida J;Sotiropoulos SN;Jbabdi S;Becker R;Hunt BAE;Brookes MJ;Woolrich MW
  • 通讯作者:
    Woolrich MW
An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging.
  • DOI:
    10.1016/j.neuroimage.2015.10.019
  • 发表时间:
    2016-01-15
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Andersson JLR;Sotiropoulos SN
  • 通讯作者:
    Sotiropoulos SN
Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes.
  • DOI:
    10.1016/j.neuroimage.2015.07.067
  • 发表时间:
    2015-11-15
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Andersson JL;Sotiropoulos SN
  • 通讯作者:
    Sotiropoulos SN
Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.
  • DOI:
    10.1016/j.neuroimage.2017.10.034
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Alfaro-Almagro F;Jenkinson M;Bangerter NK;Andersson JLR;Griffanti L;Douaud G;Sotiropoulos SN;Jbabdi S;Hernandez-Fernandez M;Vallee E;Vidaurre D;Webster M;McCarthy P;Rorden C;Daducci A;Alexander DC;Zhang H;Dragonu I;Matthews PM;Miller KL;Smith SM
  • 通讯作者:
    Smith SM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Behrens其他文献

ヒトの前頭・頭頂葉間の皮質間ネットワーク:機能・画像的解析による脳内回路の同定
人类额叶和顶叶之间的皮质间网络:通过功能和图像分析识别大脑回路
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松本理器;澤本伸克;浦山慎一;三國信啓;Timothy Behrens;池田昭夫;福山秀直;高橋良輔
  • 通讯作者:
    高橋良輔
Preliminary Process Evaluation Feedback of the Wisconsin Certified Direct Care Provider Program
威斯康星州认证直接护理提供者计划的初步过程评估反馈
  • DOI:
    10.1016/j.apmr.2025.01.386
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Timothy Behrens;Karen Miyoshi;Natalie McAndrew;Barowitz Jennifer;Carson Manning;Savanna Robertson;Emily Turner
  • 通讯作者:
    Emily Turner
Lesion probability maps of white matter hyperintensities in elderly individuals
  • DOI:
    10.1007/s00415-006-0164-5
  • 发表时间:
    2006-04-10
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Christian Enzinger;Stephen Smith;Franz Fazekas;Gunther Drevin;Stefan Ropele;Thomas Nichols;Timothy Behrens;Reinhold Schmidt;Paul M. Matthews
  • 通讯作者:
    Paul M. Matthews

Timothy Behrens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Behrens', 18)}}的其他基金

Biophysical modelling of white matter structure
白质结构的生物物理建模
  • 批准号:
    G0800578/1
  • 财政年份:
    2009
  • 资助金额:
    $ 55.14万
  • 项目类别:
    Research Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

NCS-FR: Insect-based brain-machine interfaces and robots for understanding odor-driven navigation
NCS-FR:基于昆虫的脑机接口和机器人,用于理解气味驱动的导航
  • 批准号:
    2319060
  • 财政年份:
    2023
  • 资助金额:
    $ 55.14万
  • 项目类别:
    Continuing Grant
A PROGRESS-Driven Approach to Cognitive Outcomes after Traumatic Brain Injury: Advancing Equity, Diversity, and Inclusion through Knowledge Synthesis and Mobilization
创伤性脑损伤后认知结果的进步驱动方法:通过知识合成和动员促进公平、多样性和包容性
  • 批准号:
    492338
  • 财政年份:
    2023
  • 资助金额:
    $ 55.14万
  • 项目类别:
    Operating Grants
Artificial intelligence-driven management of brain tumours
人工智能驱动的脑肿瘤管理
  • 批准号:
    2886747
  • 财政年份:
    2023
  • 资助金额:
    $ 55.14万
  • 项目类别:
    Studentship
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
  • 批准号:
    10814620
  • 财政年份:
    2023
  • 资助金额:
    $ 55.14万
  • 项目类别:
Artificial intelligence-driven radiosurgery for brain metastases
人工智能驱动的脑转移放射外科治疗
  • 批准号:
    2886553
  • 财政年份:
    2023
  • 资助金额:
    $ 55.14万
  • 项目类别:
    Studentship
Establishing Multimodal Brain Biomarkers Using Data-driven Analyticsfor Treatment Selection in Depression
使用数据驱动分析建立多模式脑生物标志物以选择抑郁症的治疗方法
  • 批准号:
    10660219
  • 财政年份:
    2023
  • 资助金额:
    $ 55.14万
  • 项目类别:
Decoding the Molecular and Cellular Mechanisms of Mutant KRAS-driven Brain Arteriovenous Malformations
解读突变 KRAS 驱动的脑动静脉畸形的分子和细胞机制
  • 批准号:
    10446836
  • 财政年份:
    2022
  • 资助金额:
    $ 55.14万
  • 项目类别:
Nano-Pulsed Optoacoustic Neuromodulation for Reducing Traumatic Brain Injury-Driven Neuropathology and Improving Cognitive Outcome
纳米脉冲光声神经调节可减少创伤性脑损伤引起的神经病理学并改善认知结果
  • 批准号:
    10625431
  • 财政年份:
    2022
  • 资助金额:
    $ 55.14万
  • 项目类别:
Deep brain stimulation for data-driven circuit-specific neuromodulation
用于数据驱动电路特定神经调节的深部脑刺激
  • 批准号:
    RGPIN-2022-05181
  • 财政年份:
    2022
  • 资助金额:
    $ 55.14万
  • 项目类别:
    Discovery Grants Program - Individual
What goes wrong in Alzheimer's disease? Elucidating pathology-driven synaptic signalling defects in brain circuits. (Project no 2253)
阿尔茨海默病到底出了什么问题?
  • 批准号:
    2766121
  • 财政年份:
    2022
  • 资助金额:
    $ 55.14万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了