Feasibility of heat conversion to electricity by new spin Seebeck based thermoelectrics

通过新型塞贝克热电材料将热能转化为电能的可行性

基本信息

  • 批准号:
    EP/L024918/1
  • 负责人:
  • 金额:
    $ 12.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The UK has committed to meet an 80% reduction in greenhouse emissions relative to 1990 by 2050. Currently, it is recognised that this will likely stem from a diverse portfolio of renewable and existing energy sources as well as the development of technologies for energy storage, conversion and usage. As the majority of the UK's total energy consumption can be attributed to heating (48%) and transport (38%) these are clearly significant targets for change. One possible route for energy storage on a domestic scale is the storage of heat that could later be converted to electricity if required. Energy harvesters designed to recycle or use various forms of energy that would otherwise be wasted (such as kinetic, thermal, acoustic, or solar), could also find applications with regards to reduction of energy demands. A technology that applies to both these applications is the thermoelectric energy generator (TEG). The TEG is typically based on the Seebeck effect: a physical process that results in the generation of an electric current when a temperature difference exists between two terminals. Advantages of this technology include reliability, flexibility, and relatively small volumes, however due to low efficiencies and high costs it is currently limited to niche markets. One of the bottlenecks for improvement of the TEG efficiency is the co-dependence of the key material properties (i.e., thermal and electric conductivities) according to the Wiedemann-Franz law. Whilst some progress has been made on this by nano-engineering, there is still some way to go before widespread commercialisation becomes viable. A solution to this bottleneck could be found in a new phenomena that involves the interplay of thermal and electron spin currents: the spin Seebeck effect. It is similar to the Seebeck effect in that a thermal gradient can be used to generate a current, but with two main differences: the material must be magnetic (whether metallic, insulating or semiconducting), and the electric current generated is spin polarised. This is significant as it has led to the observation of spin dependant conductivity, a feature that could allow us to sidestep the limit imposed by the Wiedemann-Franz Law and thus improve the efficiency of TEGs further. Harnessing the maximum spin polarised current generated by the spin Seebeck effect typically requires the use of expensive platinum contacts. For such technology to become economically viable therefore would require research into cheaper alternatives. It has been shown that small amounts of platinum, bismuth or tantalum in otherwise 'inactive' copper can result in a similar harvested voltage compared to pure platinum contacts. The aim of this research project therefore, is to explore the possibility of alternative metal contacts with respect to spin Seebeck effect based TEGs and to assess the viability of such an application.
英国承诺到2050年实现温室气体排放量比1990年减少80%。目前,人们认识到,这可能源于可再生能源和现有能源的多样化组合,以及能源储存、转换和使用技术的发展。由于英国总能源消耗的大部分可归因于供暖(48%)和交通(38%),这些显然是重大的变革目标。在家庭规模上进行能量储存的一种可能途径是储存热量,如果需要的话,这些热量可以在以后转化为电力。设计用于回收或使用各种形式的能量(如动能、热能、声能或太阳能)的能量采集器也可以在减少能源需求方面找到应用。适用于这两种应用的技术是热电能发电机(TEG)。TEG通常基于塞贝克效应:当两个端子之间存在温差时,导致产生电流的物理过程。该技术的优点包括可靠性,灵活性和相对较小的体积,但由于效率低和成本高,目前仅限于利基市场。提高TEG效率的瓶颈之一是关键材料性质的相互依赖性(即,热导率和电导率)。虽然纳米工程在这方面取得了一些进展,但在广泛的商业化变得可行之前还有一段路要走。这个瓶颈的解决方案可以在一种涉及热电流和电子自旋电流相互作用的新现象中找到:自旋塞贝克效应。它类似于塞贝克效应,因为热梯度可以用来产生电流,但有两个主要区别:材料必须是磁性的(无论是金属,绝缘还是半导体),并且产生的电流是自旋极化的。这是重要的,因为它导致了自旋相关电导率的观察,这一特征可以使我们避开Wiedemann-Franz定律所施加的限制,从而进一步提高TEG的效率。利用由自旋塞贝克效应产生的最大自旋极化电流通常需要使用昂贵的铂触点。因此,要使这种技术在经济上可行,就需要研究更便宜的替代品。已经表明,与纯铂触点相比,在其他“非活性”铜中的少量铂、铋或钽可以导致类似的收获电压。因此,本研究项目的目的是探索基于自旋塞贝克效应的TEG的替代金属接触的可能性,并评估这种应用的可行性。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Demonstration of polycrystalline thin film coatings on glass for spin Seebeck energy harvesting
  • DOI:
    10.1002/pssr.201600128
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Caruana;M. Cropper;J. Zipfel;Zhaoxia Zhou;Geoff West;K. Morrison
  • 通讯作者:
    A. Caruana;M. Cropper;J. Zipfel;Zhaoxia Zhou;Geoff West;K. Morrison
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kelly Morrison其他文献

UvA-DARE (Digital Academic Repository) When deception becomes easy The effects of task switching and goal neglect on the truth proportion
UvA-DARE(数字学术知识库)当欺骗变得容易时任务切换和目标忽视对真相比例的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kelly Morrison;B. Verschuere;B. Bockstaele;Christy E. Wilhelm;E. Meijer;Evelyne Debey
  • 通讯作者:
    Evelyne Debey
Case for Democracy
民主案例
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Lundstedt;Felix Wiebrecht;Vanessa Boes e;Kelly Morrison;Natalia Natsika;Marina Nord;Evie Papada;Yuko Sato;Staffan I. Lindberg
  • 通讯作者:
    Staffan I. Lindberg
Institutional Order in Episodes of Autocratization
独裁时期的制度秩序
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuko Sato;Martin Lundstedt;Kelly Morrison;V. Boese;Staffan I. Lindberg
  • 通讯作者:
    Staffan I. Lindberg
Autocratization Changing Nature?
专制改变本质?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nazifa Alizada;V. Boese;Martin Lundstedt;Kelly Morrison;Natalia Natsika;Yuko Sato;Hugo Tai;Staffan I. Lindberg
  • 通讯作者:
    Staffan I. Lindberg
Contributions to the entropy change in melt-spun LaFe11.6Si1.4
对熔纺 LaFe11.6Si1.4 熵变的贡献
  • DOI:
    10.1088/0022-3727/43/13/132001
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kelly Morrison;J. Lyubina;J. D. Moore;A. Caplin;K. G. Sandeman;Oliver Gutfleisch;Lesley F. Cohen
  • 通讯作者:
    Lesley F. Cohen

Kelly Morrison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kelly Morrison', 18)}}的其他基金

Rapid Prototyping of Novel Devices with In-situ Deposition, Imaging and Nanolithography
利用原位沉积、成像和纳米光刻技术快速制作新型器件原型
  • 批准号:
    EP/W006243/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Research Grant
Reliable, Scalable and Affordable Thermoelectrics: Spin Seebeck Based Devices for Energy Harvesting
可靠、可扩展且经济实惠的热电器件:基于自旋塞贝克的能量收集设备
  • 批准号:
    EP/P006221/1
  • 财政年份:
    2017
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Fellowship

相似国自然基金

热应激通过MAPK信号通路介导Vγ9Vδ2 T细胞抗肿瘤活性调控作用研究
  • 批准号:
    32000534
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
组蛋白去甲基酶KDM3A的磷酸化修饰调控基因差异表达的分子机制
  • 批准号:
    31171239
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
太阳能吸附制冷管在光热制冷循环中传热特性研究
  • 批准号:
    50976073
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
数值化方法改进密度泛函计算能量精度的研究
  • 批准号:
    20973138
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
纳米涂层表面上池沸腾防垢和强化传热的机理研究
  • 批准号:
    20876106
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
  • 批准号:
    50676006
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
变压吸附过程中微尺度传质与传热交叉耦合规律
  • 批准号:
    20676154
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
变压吸附中真空脱附过程的传质传热规律研究
  • 批准号:
    20576028
  • 批准年份:
    2005
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanistic dissection of allosteric modulation and nonproteolytic chaperone activity of human insulin-degrading enzyme
人胰岛素降解酶变构调节和非蛋白水解伴侣活性的机制剖析
  • 批准号:
    10667987
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
LEAPS-MPS: Exploring New Materials for Efficient Waste-Heat Conversion
LEAPS-MPS:探索高效废热转化的新材料
  • 批准号:
    2316831
  • 财政年份:
    2023
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
PFI-TT: Novel Silicon Photovoltaics for Efficient and Low-cost Conversion of Heat to Electricity
PFI-TT:新型硅光伏技术,可高效、低成本地将热能转化为电能
  • 批准号:
    2140694
  • 财政年份:
    2022
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Study of HP&D exhaust kiln heat conversion and use for drying bricks and tiles
惠普研究
  • 批准号:
    80917
  • 财政年份:
    2021
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Feasibility Studies
I-Corps: Large-Scale, Waste Heat Recovery Solution Based on Thermoacoustic Energy Conversion
I-Corps:基于热声能量转换的大规模废热回收解决方案
  • 批准号:
    2054022
  • 财政年份:
    2021
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
Magnon-phonon hybridization in nearly compensated magnets for thermoelecric conversion and heat control
近补偿磁体中的磁子-声子杂化用于热电转换和热控制
  • 批准号:
    20K05297
  • 财政年份:
    2020
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Electrical energy conversion of the low-temperature exhaust heat by CO2 hydrate heat cycle
CO2水合物热循环将低温废热转化为电能
  • 批准号:
    20H02675
  • 财政年份:
    2020
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of structural optimization method for thermoelectric conversion and novel heat transfer materials
热电转换结构优化方法及新型传热材料的发展
  • 批准号:
    20K14664
  • 财政年份:
    2020
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: A Deformation Mechanism-Based Approach to Understanding the Conversion of Plastic Work to Heat and Stored Energy
职业生涯:基于变形机制的方法来理解塑性功转化为热量和储存能量的过程
  • 批准号:
    1847653
  • 财政年份:
    2019
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
CAREER: Investigation of Nanoscale Radiative Heat Transfer for Enhanced Thermal Infrared Energy Conversion and Cooling
职业:研究纳米级辐射传热以增强热红外能量转换和冷却
  • 批准号:
    1836967
  • 财政年份:
    2019
  • 资助金额:
    $ 12.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了