Atherosclerosis stratification using advanced imaging and computer-based models

使用先进成像和计算机模型进行动脉粥样硬化分层

基本信息

  • 批准号:
    EP/L505304/1
  • 负责人:
  • 金额:
    $ 39.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The goal of the proposed project is to develop a novel tool for atherosclerosis risk stratification. Cardiovascular disease(CVD) via atherosclerotic plaque rupture (coronary artery disease (CAD) and stroke) is the leading single cause ofmorbidity and mortality in the Western world. Vascular atherosclerotic disease is a causative factor in a high percentage ofCVD events. Widely accepted risk markers that allow predicting cardiovascular events such as myocardial infarction andstroke are currently based on risk factors such as smoking, weight and blood pressure. These lifestyle factors and medicalconditions are derived from population based studies and are linked to an average probability of having a CV event, but donot measure the individual's personal risk, and are therefore can result in potential overtreatment.The main deliverable from this project will be a computational tool to assess the grade of atherosclerosis of an individualperson using multi-parametric magnetic resonance imaging (MRI) in combination with biophysical computer models.Advanced imaging with Magnetic Resonance will be used for plaque burden measurement and plaque componentcharacterization in order to identify the risk of rupture and the systemic atherosclerosis burden. The team will use exitingMRI methods in combination with novel markers of plaque vulnerability. These markers include: plaque volume, intraplaquehaemorrhage, lipid content, calcification, endothelial permeability and extracellular volume. In addition, biophysicalmodels will be used to predict biomechanical properties related to atherosclerotic changes in the vascular system. Theteam will investigate and compute markers such as wall shear stress, particle residence time and arterial wall stiffness,which can give further insight into atherosclerosis development. For the first time, different parameters from modelling and The goal of the proposed project is to develop a novel tool for atherosclerosis risk stratification. Cardiovascular disease(CVD) via atherosclerotic plaque rupture (coronary artery disease (CAD) and stroke) is the leading single cause ofmorbidity and mortality in the Western world. Vascular atherosclerotic disease is a causative factor in a high percentage ofCVD events. Widely accepted risk markers that allow predicting cardiovascular events such as myocardial infarction andstroke are currently based on risk factors such as smoking, weight and blood pressure. These lifestyle factors and medicalconditions are derived from population based studies and are linked to an average probability of having a CV event, but donot measure the individual's personal risk, and are therefore can result in potential overtreatment.The main deliverable from this project will be a computational tool to assess the grade of atherosclerosis of an individualperson using multi-parametric magnetic resonance imaging (MRI) in combination with biophysical computer models.Advanced imaging with Magnetic Resonance will be used for plaque burden measurement and plaque componentcharacterization in order to identify the risk of rupture and the systemic atherosclerosis burden. The team will use exitingMRI methods in combination with novel markers of plaque vulnerability. These markers include: plaque volume, intraplaquehaemorrhage, lipid content, calcification, endothelial permeability and extracellular volume. In addition, biophysicalmodels will be used to predict biomechanical properties related to atherosclerotic changes in the vascular system. Theteam will investigate and compute markers such as wall shear stress, particle residence time and arterial wall stiffness,which can give further insight into atherosclerosis development. For the first time, different parameters from modelling and The goal of the proposed project is to develop a novel tool for atherosclerosis risk stratification. Cardiovascular disease(CVD) via atherosclerotic plaque rupture (coronary artery disease (CAD) and stroke) is the leading single cause ofmorbidity and mortality in the Western world. Vascular atherosclerotic disease is a causative factor in a high percentage ofCVD events. Widely accepted risk markers that allow predicting cardiovascular events such as myocardial infarction andstroke are currently based on risk factors such as smoking, weight and blood pressure. These lifestyle factors and medicalconditions are derived from population based studies and are linked to an average probability of having a CV event, but donot measure the individual's personal risk, and are therefore can result in potential overtreatment.The main deliverable from this project will be a computational tool to assess the grade of atherosclerosis of an individualperson using multi-parametric magnetic resonance imaging (MRI) in combination with biophysical computer models.Advanced imaging with Magnetic Resonance will be used for plaque burden measurement and plaque componentcharacterization in order to identify the risk of rupture and the systemic atherosclerosis burden. The team will use exitingMRI methods in combination with novel markers of plaque vulnerability. These markers include: plaque volume, intraplaquehaemorrhage, lipid content, calcification, endothelial permeability and extracellular volume. In addition, biophysicalmodels will be used to predict biomechanical properties related to atherosclerotic changes in the vascular system. Theteam will investigate and compute markers such as wall shear stress, particle residence time and arterial wall stiffness,which can give further insight into atherosclerosis development. For the first time, different parameters from modelling and imaging will be integrated into one clinical tool for comprehensive and individual risk stratification on different assessmentlevels.
该项目的目标是开发一种新的动脉粥样硬化危险分层工具。在西方世界,通过动脉粥样硬化斑块破裂(冠状动脉疾病(CAD)和中风)引起的心血管疾病(CVD)是发病率和死亡率的主要单一原因。血管粥样硬化性疾病是高比例心血管事件的致病因素。目前,广泛接受的可以预测心血管事件(如心肌梗死和中风)的风险标志物是基于吸烟、体重和血压等风险因素。这些生活方式因素和医疗条件来自基于人群的研究,与发生CV事件的平均概率相关,但不衡量个体的个人风险,因此可能导致潜在的过度治疗。该项目的主要成果将是一种计算工具,用于使用多参数磁共振成像(MRI)评估个体的动脉粥样硬化程度。结合生物物理计算机模型。先进的磁共振成像将用于斑块负荷测量和斑块成分表征,以确定破裂风险和全身动脉粥样硬化负荷。研究小组将使用现有的MRI方法结合新的斑块易损性标记物。这些标志物包括:斑块体积、斑块内出血、脂质含量、钙化、内皮通透性和细胞外体积。此外,生物力学模型将用于预测与血管系统中动脉粥样硬化变化相关的生物力学特性。研究小组将调查和计算壁面剪切应力、颗粒停留时间和动脉壁硬度等指标,这些指标可以进一步了解动脉粥样硬化的发展。第一次,不同的参数从建模和拟议项目的目标是开发一种新的工具动脉粥样硬化风险分层。在西方世界,通过动脉粥样硬化斑块破裂(冠状动脉疾病(CAD)和中风)引起的心血管疾病(CVD)是发病率和死亡率的主要单一原因。血管粥样硬化性疾病是高比例心血管事件的致病因素。目前,广泛接受的可以预测心血管事件(如心肌梗死和中风)的风险标志物是基于吸烟、体重和血压等风险因素。这些生活方式因素和医疗状况源自基于人群的研究,并与发生CV事件的平均概率有关,但不衡量个人的个人风险,因此可能导致潜在的过度治疗。该项目的主要成果将是一种计算工具,用于使用多参数磁共振成像(MRI)评估个体的动脉粥样硬化程度。结合生物物理计算机模型。先进的磁共振成像将用于斑块负荷测量和斑块成分表征,以确定破裂风险和全身动脉粥样硬化负荷。研究小组将使用现有的MRI方法结合新的斑块易损性标记物。这些标志物包括:斑块体积、斑块内出血、脂质含量、钙化、内皮通透性和细胞外体积。此外,生物力学模型将用于预测与血管系统中动脉粥样硬化变化相关的生物力学特性。研究小组将调查和计算壁面剪切应力、颗粒停留时间和动脉壁硬度等指标,这些指标可以进一步了解动脉粥样硬化的发展。第一次,不同的参数从建模和拟议项目的目标是开发一种新的工具动脉粥样硬化风险分层。在西方世界,通过动脉粥样硬化斑块破裂(冠状动脉疾病(CAD)和中风)引起的心血管疾病(CVD)是发病率和死亡率的主要单一原因。血管粥样硬化性疾病是高比例心血管事件的致病因素。目前,广泛接受的可以预测心血管事件(如心肌梗死和中风)的风险标志物是基于吸烟、体重和血压等风险因素。这些生活方式因素和医疗状况源自基于人群的研究,并与发生CV事件的平均概率有关,但不衡量个人的个人风险,因此可能导致潜在的过度治疗。该项目的主要成果将是一种计算工具,用于使用多参数磁共振成像(MRI)评估个体的动脉粥样硬化程度。结合生物物理计算机模型。先进的磁共振成像将用于斑块负荷测量和斑块成分表征,以确定破裂风险和全身动脉粥样硬化负荷。研究小组将使用现有的MRI方法结合新的斑块易损性标记物。这些标志物包括:斑块体积、斑块内出血、脂质含量、钙化、内皮通透性和细胞外体积。此外,生物力学模型将用于预测与血管系统中动脉粥样硬化变化相关的生物力学特性。研究小组将调查和计算壁面剪切应力、颗粒停留时间和动脉壁硬度等指标,这些指标可以进一步了解动脉粥样硬化的发展。这是第一次,来自建模和成像的不同参数将被整合到一个临床工具中,用于在不同评估水平上进行综合和个体风险分层。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction.
Aortic centreline tracking for PWV measurements in multiple MRI sequences
主动脉中心线跟踪,用于多个 MRI 序列中的 PWV 测量
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    VanEngelen A
  • 通讯作者:
    VanEngelen A
Automatic coronary centerline tracking from coronary MRI
通过冠状动脉 MRI 自动跟踪冠状动脉中心线
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Van Engelen A
  • 通讯作者:
    Van Engelen A
Simultaneous [18F]fluoride and gadobutrol enhanced coronary positron emission tomography/magnetic resonance imaging for in vivo plaque characterization.
同时[18F]氟化物和钆布醇增强冠状动脉正电子发射断层扫描/磁共振成像,用于体内斑块表征。
Medical Image Understanding and Analysis
医学图像理解与分析
  • DOI:
    10.1007/978-3-319-60964-5_14
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Van Engelen A
  • 通讯作者:
    Van Engelen A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tobias Richard Schaeffter其他文献

Tobias Richard Schaeffter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tobias Richard Schaeffter', 18)}}的其他基金

Uncovering Contributors to Hypertension through Experimental and Computational Simulation (CHECS)
通过实验和计算模拟 (CHECS) 揭示高血压的成因
  • 批准号:
    EP/K031546/1
  • 财政年份:
    2013
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Research Grant
Magnetic Resonance Guided Therapy of Cardiac Arhythmia ( MaRGiTA)
磁共振引导心律失常治疗 (MaRGiTA)
  • 批准号:
    TS/G002142/1
  • 财政年份:
    2009
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Research Grant

相似国自然基金

房颤下左心耳血栓形成机理及个性化卒中风险评估研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于影像代谢重塑可视化的延胡索酸水合酶缺陷型肾癌危险性分层模型的研究
  • 批准号:
    82371912
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
使用倾向分(Propensity Score)和主分层(Principal Stratification)进行因果推断
  • 批准号:
    10401003
  • 批准年份:
    2004
  • 资助金额:
    11.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Stratification, Management, and Guidance of Hypertrophic Cardiomyopathy Patients using Hybrid Digital Twin Solutions
使用混合数字孪生解决方案对肥厚型心肌病患者进行分层、管理和指导
  • 批准号:
    10109598
  • 财政年份:
    2024
  • 资助金额:
    $ 39.46万
  • 项目类别:
    EU-Funded
Prognostic stratification by weighting the pathogenicity of ALS-related gene polymorphism using artificial intelligence.
使用人工智能加权 ALS 相关基因多态性的致病性进行预后分层。
  • 批准号:
    23K14771
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
  • 批准号:
    10663613
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
Chromosomal aberration detection in FFPE tissue using proximity ligation sequencing
使用邻近连接测序检测 FFPE 组织中的染色体畸变
  • 批准号:
    10759887
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
Objective quantification of vitreous inflammation using optical coherence tomography
使用光学相干断层扫描客观量化玻璃体炎症
  • 批准号:
    10574348
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
Personalized Risk Stratification in Atrial Fibrillation using Portable, Explainable Artificial Intelligence
使用便携式、可解释的人工智能对心房颤动进行个性化风险分层
  • 批准号:
    10905154
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
Stratification of Patients using advanced Integrative modelling of Data Routinely acquired for diagnosing Rheumatic complaints
使用常规获取的用于诊断风湿病症状的先进数据综合模型对患者进行分层
  • 批准号:
    10066059
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    EU-Funded
Supplement to Support the Development of a New Multiplexed Imaging Tool using Raman Spectroscopy for Breast Cancer
支持开发使用拉曼光谱治疗乳腺癌的新型多重成像工具的补充材料
  • 批准号:
    10839117
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
  • 批准号:
    10714834
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
  • 批准号:
    10565985
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了