Multiscale modelling of three-dimensional plant root growth

三维植物根系生长的多尺度建模

基本信息

  • 批准号:
    EP/M00015X/1
  • 负责人:
  • 金额:
    $ 12.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Virtually all our food comes ultimately from plants, either directly or when used as feedstock for animals. Thus to ensure a secure food supply for the future, particularly in the light of global climate change and population growth, it is essential that we fully understand how plants, in particular their roots, grow so we may optimise their growth in challenging environmental conditions (for example during a drought or a flood).A plant root grows via the elongation of some of its cells, pushing the root forward into the surrounding soil. Plant cells cannot move relative to one another, and so tight control of growth across all cells in an organ such as a root is required. As the root grows, it twists and bends in response to its own internal stresses, as well as by actively varying its mechanical properties (via hormonal control) across the root cross section. This leads to improved penetration of the soil and responses to gravity and touch, for example. These internal stresses and mechanical properties are related to the complex and continually evolving microstructure of the plant cell wall, which consists of a highly organised network of components and is the key mechanical regulator of growth. In particular, the structure of the cell wall gives it anisotropic properties, i.e. these are different depending on which direction you consider them in.This is a highly complex problem, with the structure of the cell wall determining the mechanical properties of a cell wall segment, which determines the growth and behaviour of the entire root, which in turn feeds back to changes in the structure of the cell wall. Information from the microscopic scale therefore governs what happens to the whole root. We thus need to develop detailed mathematical models to extract the key features and mechanisms which control this growth.Most current mathematical models only describe straight growing roots and do not allow for any curving, so they cannot answer questions in which this curvature is important or as to how it is generated. Similarly, when considering the mechanical properties of the structured cell wall network, current models are overly simplified, neglecting many important features such as the reorientation of components during growth. Finally, whilst progress has recently been made at each individual scale, combining these models to form a fully multiscale model remains challenging. This project has two components: developing the new mathematical methodologies required to describe such systems, and analysing the resulting models to determine the key biological effects driving root growth.Using techniques from continuum mechanics, we will derive accurate and biologically relevant models to describe these phenomena. Analysing the models using asymptotic and numerical techniques will lead to novel biological hypotheses which can then be tested experimentally. By developing these mathematical models and techniques we will further understand plant growth, and the tools produced are likely to also be useful to understand other systems which have complex microstructures, whether found in biology, medicine or industry.
事实上,我们所有的食物最终都来自植物,要么直接来自植物,要么被用作动物的饲料。因此,为了确保未来的安全粮食供应,特别是在全球气候变化和人口增长的背景下,我们必须充分了解植物,特别是它们的根是如何生长的,这样我们才能在具有挑战性的环境条件下(例如在干旱或洪水期间)优化它们的生长。植物的根通过一些细胞的伸长生长,将根向前推进到周围的土壤中。植物细胞不能彼此相对移动,因此需要对器官(如根)中所有细胞的生长进行严格控制。随着根的生长,它会根据自身的内应力,以及通过主动改变其机械特性(通过激素控制),在根的横截面上扭曲和弯曲。例如,这可以改善土壤的渗透性以及对重力和触摸的反应。这些内应力和机械性能与植物细胞壁的复杂和不断发展的微观结构有关,细胞壁由一个高度组织的组分网络组成,是生长的关键机械调节器。特别是,细胞壁的结构赋予了它各向异性的特性,也就是说,这些特性取决于你考虑它们的方向。这是一个非常复杂的问题,细胞壁的结构决定了细胞壁段的机械特性,这决定了整个根的生长和行为,这反过来又反馈给细胞壁结构的变化。因此,来自微观尺度的信息支配着整个根的变化。因此,我们需要开发详细的数学模型来提取控制这种增长的关键特征和机制。目前大多数数学模型只描述笔直生长的根,不考虑任何弯曲,因此它们不能回答曲率重要的问题,也不能回答曲率是如何产生的问题。同样,在考虑结构细胞壁网络的力学性能时,目前的模型过于简化,忽略了许多重要的特征,如生长过程中组件的重新定向。最后,虽然最近在每个个体尺度上都取得了进展,但将这些模型结合起来形成一个完整的多尺度模型仍然具有挑战性。该项目有两个组成部分:开发描述此类系统所需的新数学方法,并分析由此产生的模型,以确定驱动根系生长的关键生物效应。使用连续介质力学的技术,我们将推导出准确的和生物学相关的模型来描述这些现象。使用渐近和数值技术分析模型将导致新的生物学假设,然后可以通过实验进行验证。通过发展这些数学模型和技术,我们将进一步了解植物生长,所产生的工具也可能有助于理解其他具有复杂微观结构的系统,无论是在生物学、医学还是工业中发现的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Model selection and parameter estimation for root architecture models using likelihood-free inference.
使用无似然推理的根架构模型的模型选择和参数估计。
Mathematical principles and models of plant growth mechanics: from cell wall dynamics to tissue morphogenesis.
植物生长力学的数学原理和模型:从细胞壁动力学到组织形态发生。
Regularized Stokeslet rings: An efficient method for axisymmetric Stokes flow with application to the growing pollen tube
正则化斯托克斯莱特环:轴对称斯托克斯流的有效方法及其在花粉管生长中的应用
  • DOI:
    10.1103/physrevfluids.4.063102
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Tyrrell J
  • 通讯作者:
    Tyrrell J
Regularized Stokeslet rings - an efficient method for axisymmetric Stokes flow, with application to the growing pollen tube
正则化斯托克斯莱特环 - 轴对称斯托克斯流的有效方法,适用于生长的花粉管
  • DOI:
    10.48550/arxiv.1902.10476
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tyrrell J
  • 通讯作者:
    Tyrrell J
Influences of transversely isotropic rheology and translational diffusion on the stability of active suspensions.
  • DOI:
    10.1098/rsos.180456
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Holloway CR;Cupples G;Smith DJ;Green JEF;Clarke RJ;Dyson RJ
  • 通讯作者:
    Dyson RJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rosemary Dyson其他文献

The effects in humans of rapid loss of body mass on a boxing-related task
体重快速减少对人类拳击相关任务的影响
  • DOI:
    10.1007/s004210000251
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Marcus S. Smith;Rosemary Dyson;Tudor Hale;J. Harrison;P. McManus
  • 通讯作者:
    P. McManus
Physiological consequences of military high-speed boat transits
  • DOI:
    10.1007/s00421-010-1765-3
  • 发表时间:
    2010-12-14
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Stephen D. Myers;Trevor D. Dobbins;Stuart King;Benjamin Hall;Ruth M. Ayling;Sharon R. Holmes;Tom Gunston;Rosemary Dyson
  • 通讯作者:
    Rosemary Dyson

Rosemary Dyson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Three-dimensional Bayesian Modelling of Geological and Geophysical data
地质和地球物理数据的三维贝叶斯建模
  • 批准号:
    LP210301239
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Linkage Projects
Three dimensional modelling of rockfill columns for riverbank stabilization
用于河岸稳定的堆石柱三维建模
  • 批准号:
    557068-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Postdoctoral Fellowships
Measuring and modelling ambient noise in three-dimensional ocean environments
三维海洋环境中的环境噪声测量和建模
  • 批准号:
    RGPIN-2016-04887
  • 财政年份:
    2021
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Discovery Grants Program - Individual
Three dimensional modelling of rockfill columns for riverbank stabilization
用于河岸稳定的堆石柱三维建模
  • 批准号:
    557068-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Postdoctoral Fellowships
Translating the Three-Dimensional Mathematical Modelling of Plant Growth to Additive Manufacturing
将植物生长的三维数学模型转化为增材制造
  • 批准号:
    2449766
  • 财政年份:
    2020
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Studentship
Three-dimensional ecological niche modelling of midwater narcomedusan jellyfish
中水纳尔科杜桑水母三维生态位建模
  • 批准号:
    20K06806
  • 财政年份:
    2020
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fully-Lagrangian three-dimensional modelling of river ice jam initiation
河流冰塞引发的全拉格朗日三维建模
  • 批准号:
    558609-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Alliance Grants
Measuring and modelling ambient noise in three-dimensional ocean environments
三维海洋环境中的环境噪声测量和建模
  • 批准号:
    RGPIN-2016-04887
  • 财政年份:
    2020
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Discovery Grants Program - Individual
Three-dimensional modelling of the lithospheric mantle under the Hindu Kush and Pamir: Does continental lithosphere subduct?
兴都库什和帕米尔地区岩石圈地幔的三维建模:大陆岩石圈俯冲吗?
  • 批准号:
    518757-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Multiscale three dimensional modelling of articular cartilage
关节软骨的多尺度三维建模
  • 批准号:
    RGPIN-2014-04778
  • 财政年份:
    2019
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了