Engineering Fellowships for Growth: Solidification Processing of Alloys for Sustainable Manufacturing
增长工程奖学金:用于可持续制造的合金凝固加工
基本信息
- 批准号:EP/M002241/1
- 负责人:
- 金额:$ 102.43万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We rely on metallic objects every day, from bicycles and bridges to the solder joints in our electronics. In each case, a key step in manufacturing is the solidification of liquid alloy, and it is through controlling solidification that we can control grain structure and defects. Solidification is at the heart of current challenges facing the UK: steel and aluminium production contributes more than 10% to global industrial CO2 emissions, and new solder technologies are required to enable the manufacturing of smaller, more powerful portable electronics. In all these industries, advances will involve controlling the solidification microstructure and controlling solidification defects.Key to the development of grain structure in solder joints and structural castings are the earliest stages of solidification when the number-density of grains is determined by the number density of nucleation events. The project will use new microscopy techniques which combine focussing an ion beam to micro-machine into the centre of crystals and find nucleant particles with electron diffraction to understand how the particles catalyse nucleation. With this information, new ways to control nucleation will be explored.After nucleation, the semi-solid grain structure goes on to significantly affect the formation of defects in castings and solder joints. Part of tackling this challenge is to develop a deeper understanding of how and why casting defects form. It is known that the origin of semi-solid cracking is the stresses and strains that develop during solidification but, to understand the details, we need to observe and measure how numerous solidifying crystals respond to loads during solidification. Metals and alloys are opaque to visible light and their inner structure is therefore hidden from our eyes. By pouring liquid alloy, we can see that they have a low viscosity and that the viscosity increases considerably as alloys solidify, but we cannot see or measure what structural changes are causing these changing flow properties. X-rays can be transmitted through metals, offering the potential to observe the development of microstructure, but it is only in the last decade that X ray sources have become available with sufficient flux and coherence to allow real-time imaging of crystal growth in alloys. This was an enormous step forward as it became possible to test solidification theories developed in 'post-mortem' studies using real metallic samples.This project will extend these synchrotron techniques to observe and measure the solidification of intermetallic grains in solder joints, and to study how deformation of the semi-solid grain structure leads to casting defect formation. We aim to observe and measure for the first time where intermetallics nucleate in solder joints and how they grow during solder reactions. This will give us insights that we can use to engineer solder joint microstructures and tackle the final frontiers in the transition to Pb-free soldering such as a replacement for high-Pb solder for use at T>180C.Similar techniques will be applied to imaging the formation of inter-columnar cracking in experiments analogous to the continuous casting of steel, a process used to produce more than one billion tonnes of steel annually. An exciting aspect of this part of the research is that much about semi-solid alloy deformation is unknown: How is force transmitted from crystal to crystal? What happens when two crystals are pushed into one another? Do they bend? Do they fragment? Do they behave as rigid bodies? Why do strain instabilities develop? Where do cracks begin and how fast do they grow? These questions can only be fully answered with in-situ observations of deformation at the scale of the microstructure. We have begun to address these questions in pilot studies and now we aim to expand this to crack movement in the mush.
我们每天都依赖金属物体,从自行车和桥梁到电子产品的焊点。在每种情况下,制造的关键步骤都是液态合金的凝固,通过控制凝固,我们可以控制晶粒结构和缺陷。固化是英国当前面临的核心挑战:钢铁和铝生产对全球工业二氧化碳排放量的贡献超过10%,需要新的焊接技术来制造更小,更强大的便携式电子产品。在所有这些行业中,进步将涉及控制凝固组织和控制凝固缺陷。焊点和组织铸件晶粒组织发展的关键是凝固的最初阶段,此时晶粒的数量密度由形核事件的数量密度决定。该项目将使用新的显微镜技术,将离子束聚焦到晶体中心的微型机器上,并通过电子衍射找到成核粒子,以了解粒子如何催化成核。有了这些信息,将探索控制成核的新方法。在形核后,半固态晶粒组织继续显著影响铸件和焊点缺陷的形成。解决这一挑战的一部分是深入了解铸造缺陷是如何以及为什么形成的。众所周知,半固态裂纹的起源是凝固过程中产生的应力和应变,但为了了解细节,我们需要观察和测量凝固过程中无数凝固晶体对载荷的响应。金属和合金对可见光是不透明的,因此它们的内部结构对我们的眼睛是隐藏的。通过浇注液态合金,我们可以看到它们的粘度很低,而且随着合金凝固,粘度会显著增加,但我们无法看到或测量是什么结构变化导致了这些流动特性的变化。X射线可以穿透金属,提供了观察微观结构发展的潜力,但直到最近十年,X射线源才有足够的通量和相干性,可以实时成像合金中的晶体生长。这是一个巨大的进步,因为它可以使用真实的金属样品来测试“死后”研究中发展的凝固理论。本项目将扩展这些同步加速器技术,观察和测量焊点金属间晶粒的凝固,并研究半固态晶粒结构的变形如何导致铸造缺陷的形成。我们的目标是首次观察和测量金属间化合物在焊点中的成核位置以及它们在焊接反应中如何生长。这将为我们提供可用于设计焊点微结构的见解,并解决向无铅焊接过渡的最终前沿问题,例如替换用于T bb0 - 180C的高铅焊料。类似的技术将应用于在类似于连续铸钢的实验中成像柱间裂纹的形成,连续铸钢是每年生产超过10亿吨钢的一种工艺。这部分研究的一个令人兴奋的方面是,半固态合金变形的很多方面是未知的:力是如何从晶体传递到晶体的?当两个晶体相互挤压时会发生什么?它们会弯曲吗?它们会分裂吗?它们是刚体吗?应变不稳定性为什么会发展?裂缝从哪里开始,发展有多快?这些问题只能通过在微观结构尺度上的变形现场观察来完全回答。我们已经开始在试点研究中解决这些问题,现在我们的目标是将其扩展到破解糊状物中的运动。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of bismuth on the solidification of Sn-0.7Cu-0.05Ni-xBi/Cu joints
- DOI:10.1016/j.jallcom.2016.12.404
- 发表时间:2017-04
- 期刊:
- 影响因子:6.2
- 作者:S. Belyakov;J. Xian;K. Sweatman;T. Nishimura;T. Akaiwa;C. Gourlay
- 通讯作者:S. Belyakov;J. Xian;K. Sweatman;T. Nishimura;T. Akaiwa;C. Gourlay
Metastable eutectic in Pb-free joints between Sn-3.5Ag and Ni-based substrates
Sn-3.5Ag 和镍基基材之间无铅接头中的亚稳态共晶
- DOI:10.1016/j.matlet.2015.02.073
- 发表时间:2015
- 期刊:
- 影响因子:3
- 作者:Belyakov S
- 通讯作者:Belyakov S
Solidification orientation relationships between Al3Ti and TiB2
- DOI:10.1016/j.actamat.2019.12.013
- 发表时间:2020-03
- 期刊:
- 影响因子:9.4
- 作者:Y. Cui;D. King;A. Horsfield;C. Gourlay
- 通讯作者:Y. Cui;D. King;A. Horsfield;C. Gourlay
Heterogeneous nucleation of ßSn on NiSn4, PdSn4 and PtSn4
NiSn4、PdSn4 和 PtSn4 上 Sn 的异相成核
- DOI:10.1016/j.actamat.2014.02.044
- 发表时间:2014
- 期刊:
- 影响因子:9.4
- 作者:Belyakov S
- 通讯作者:Belyakov S
Advances in Electronic Interconnection Materials
电子互连材料的进展
- DOI:10.1007/s11837-018-3267-4
- 发表时间:2018
- 期刊:
- 影响因子:2.6
- 作者:Gourlay C
- 通讯作者:Gourlay C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Gourlay其他文献
Interfacial carbides enhance dispersion and grain refinement in melt-processed SiC nanowhisker reinforced magnesium AZ91 alloy
界面碳化物增强了熔融加工的 SiC 纳米晶须增强镁 AZ91 合金中的分散和晶粒细化。
- DOI:
10.1016/j.matchar.2025.115300 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.500
- 作者:
Zhuocheng Xu;Anne Bonnin;Benjamin Watts;Xinyi Hao;Yuting Dai;Christopher Gourlay;Christian Kübel;Milo S.P. Shaffer;Qianqian Li - 通讯作者:
Qianqian Li
X線イメージングを利用した高固相率の固液共存所体におけるせん断変形のその場観察
利用X射线成像原位观察高固相固液共存体的剪切变形
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
柳楽知也;横田大和;森田周吾;安田秀幸;柳井森吾;吉矢真人;杉山明;Christopher Gourlay;上杉健太朗 - 通讯作者:
上杉健太朗
放射光イメージングの鉄鋼材料の凝固、固液共存状態の変形への応用
同步辐射成像在钢材凝固及固液共存态变形中的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
柳楽知也;横田大和;森田周吾;吉矢真人;安田秀幸;Christopher Gourlay;杉山明;上杉健太朗;柳楽知也 - 通讯作者:
柳楽知也
人は太陽の恵みで生きているー光合成から人工光合成へ
人类赖以生存——从光合作用到人工光合作用
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
横田大和;金本拓;柳楽知也;森田周吾;吉矢真人;Christopher Gourlay;安田秀幸;神谷信夫 - 通讯作者:
神谷信夫
凝固末期の固液共存体のせん断変形による組織変化のその場観察
凝固末期固液共存剪切变形引起的结构变化的原位观察
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
柳楽知也;森田周吾;横田大和;安田秀幸;杉山明;吉矢真人;Christopher Gourlay;上杉健太朗 - 通讯作者:
上杉健太朗
Christopher Gourlay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Gourlay', 18)}}的其他基金
High Reliability Interconnects: New Methodologies for Lead-free Solders
高可靠性互连:无铅焊接的新方法
- 批准号:
EP/R018863/1 - 财政年份:2018
- 资助金额:
$ 102.43万 - 项目类别:
Research Grant
A soil and magma mechanics approach to understanding defects in cast metals manufacturing
用于理解铸造金属制造中缺陷的土壤和岩浆力学方法
- 批准号:
EP/K026763/1 - 财政年份:2013
- 资助金额:
$ 102.43万 - 项目类别:
Research Grant
Video microscopy of granular deformation and strain localisation in partially-solid alloys
部分固态合金中晶粒变形和应变局部化的视频显微镜
- 批准号:
EP/H016848/1 - 财政年份:2010
- 资助金额:
$ 102.43万 - 项目类别:
Research Grant
相似海外基金
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
- 批准号:
EP/M002489/3 - 财政年份:2018
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
- 批准号:
EP/M002489/2 - 财政年份:2016
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Materials by Design for Impact in Aerospace Engineering
工程奖学金促进增长:材料设计对航空航天工程的影响
- 批准号:
EP/M002322/2 - 财政年份:2015
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship
Engineering Fellowships For Growth: Designing Feedback Control in Biology for Robustness and Scalability
增长工程奖学金:设计生物学中的反馈控制以实现鲁棒性和可扩展性
- 批准号:
EP/M002454/1 - 财政年份:2015
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Systems and control engineering framework for robust and efficient synthetic biology
增长工程奖学金:用于稳健和高效合成生物学的系统和控制工程框架
- 批准号:
EP/M002187/1 - 财政年份:2015
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Imperceptible smart coatings based on atomically thin materials
增长工程奖学金:基于原子级薄材料的难以察觉的智能涂层
- 批准号:
EP/M002438/1 - 财政年份:2014
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Next generation of lightweight composites - how far can we go?
增长工程奖学金:下一代轻质复合材料——我们能走多远?
- 批准号:
EP/M002500/1 - 财政年份:2014
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
- 批准号:
EP/M002306/1 - 财政年份:2014
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
- 批准号:
EP/M002489/1 - 财政年份:2014
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Building advanced materials to treat vision loss
增长工程奖学金:构建先进材料来治疗视力丧失
- 批准号:
EP/M002209/1 - 财政年份:2014
- 资助金额:
$ 102.43万 - 项目类别:
Fellowship














{{item.name}}会员




