Engineering Fellowships for Growth: Imperceptible smart coatings based on atomically thin materials
增长工程奖学金:基于原子级薄材料的难以察觉的智能涂层
基本信息
- 批准号:EP/M002438/1
- 负责人:
- 金额:$ 143.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The need for greater fuel efficiency in the aeronautical, automotive and aerospace industries is driving the demand for low weight high-performance materials. For example, low specific weight electronic devices which can generate light or harvest electricity and can be embedded into paints or windows would make the structures of current vehicles considerably lighter, therefore more efficient. At the same time, low specific weight electrical conductors acting as a ground in the electrical circuits of vehicles and yet able to protect aircraft from lightning bolts would also reduce considerably the vehicle weight. Extra lightweight transparent conductors and semiconductors also constitute the fundamental ingredients for the next generation flexible solar cells and future flexible electronic components. Atomically thin materials, not only offer these desired properties, but with their excellent mechanical, thermal, electrical, and gas impermeability properties are ideal for the realization of multi-functional coatings. Atomically thin materials are the thinnest materials which can be conceived. Graphene -a monoatomic carbon layer- is certainly the most celebrated and studied representative of this new family of materials This is the strongest known material, the best electrical and thermal conductor which is mechanically flexible and transparent. Other emerging atomically thin materials, e.g. dichalcogenides such as MoS2, have complementary characteristics to graphene such as semiconducting properties necessary for transistor applications. Recent advances in chemical functionalization have shown that the properties of these atomically thin materials can be enhanced to unprecedented levels by chemical bonding of a molecule or a chemical element to the pristine material. The most recent example of the potential of chemical functionalization is GraphExeter, a new graphene-based material which my team developed at Exeter. In this case, functionalization with FeCl3 of few-layer graphene results in the best transparent electrical conductor which outperforms Indium Tin Oxide used in displays. The exploitation of atomically thin materials with extraordinary performances in high-value products such as smart imperceptible coatings is exactly at the heart of this proposal. Thus, this ambitious fellowship aims to build UK leadership in engineering advanced materials by exploiting the emerging technologies of atomically thin materials for prototyping imperceptible smart coatings. This will accelerate the fast development of highly efficient aircrafts, cars, displays and solar cells with added novel functionalities. Achieving this aim will be the foundation of several cutting-edge technologies crucial for our society, such as transforming the windscreens of cars and airplanes into display controls and GPS-activated maps and at the same time allowing their windows and paints to harvest electricity from the sun.Together with the team that I will develop to deliver this research vision, we will aim at understanding the materials properties and processing challenges involved in the large scale manufacturing of atomically thin conducting and semiconducting coatings. Building on this understanding, my team will focus on developing high-value products by exploring the sustainable use of atomically thin materials for prototyping multi-functional smart coatings. Specifically, we will develop imperceptible coatings, which will not only enhance the efficiency of aircrafts, cars, displays and solar cells, but will add novel functionalities, such as light emission and energy harvesting. The outcomes of this research will therefore have a revolutionary impact on society as it will change the current landscape of many industries, ranging from automotive and aerospace to information and communication technologies. My track record of outstanding research in the studies of such materials puts me in a unique position to complete such challenging tasks.
航空、汽车和航天工业对更高燃油效率的需求推动了对轻质高性能材料的需求。例如,可以产生光或收集电并且可以嵌入油漆或窗户中的低比重电子设备将使当前车辆的结构显著更轻,因此更有效。与此同时,低比重的电导体在车辆的电路中充当接地,并且还能够保护飞机免受闪电的影响,这也将大大减轻车辆的重量。超轻的透明导体和半导体也构成了下一代柔性太阳能电池和未来柔性电子元件的基本成分。原子级薄的材料不仅提供这些所需的性能,而且具有优异的机械、热、电和气体不渗透性,是实现多功能涂层的理想选择。原子级薄的材料是可以设想的最薄的材料。石墨烯-一种单原子碳层-肯定是这个新材料家族中最着名和最受研究的代表。这是已知最强的材料,是机械柔性和透明的最佳电和热导体。其他新兴的原子级薄材料,例如二硫属化物,如MoS 2,具有与石墨烯互补的特性,如晶体管应用所需的半导体特性。化学功能化的最新进展表明,通过将分子或化学元素化学键合到原始材料上,可以将这些原子级薄材料的性能提高到前所未有的水平。化学功能化潜力的最新例子是Graph埃克塞特,这是我的团队在埃克塞特开发的一种新的石墨烯基材料。在这种情况下,用FeCl 3对少层石墨烯进行功能化,产生了最好的透明导电体,其性能优于显示器中使用的氧化铟锡。在高价值产品(如智能隐形涂层)中开发具有非凡性能的原子级薄材料正是该提案的核心。因此,这个雄心勃勃的奖学金旨在通过利用原子薄材料的新兴技术来建立英国在工程先进材料方面的领导地位,以原型化不可感知的智能涂层。这将加速高效飞机、汽车、显示器和具有附加新功能的太阳能电池的快速发展。实现这一目标将是几项对我们的社会至关重要的尖端技术的基础,例如将汽车和飞机的挡风玻璃转变为显示控制和GPS激活的地图,同时允许他们的窗户和油漆从太阳中获取电力。我们的目标是了解原子级薄导电和半导体涂层的大规模制造所涉及的材料特性和加工挑战。基于这种理解,我的团队将专注于开发高价值产品,探索原子级薄材料的可持续使用,以实现多功能智能涂层的原型设计。具体来说,我们将开发不易察觉的涂层,这不仅将提高飞机、汽车、显示器和太阳能电池的效率,还将增加新的功能,如光发射和能量收集。因此,这项研究的成果将对社会产生革命性的影响,因为它将改变许多行业的现状,从汽车和航空航天到信息和通信技术。我在这些材料研究方面的杰出研究记录使我处于一个独特的位置来完成这样具有挑战性的任务。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature Evolution in Nanoscale Carbon-Based Memory Devices Due to Local Joule Heating
- DOI:10.1109/tnano.2017.2674303
- 发表时间:2017-02
- 期刊:
- 影响因子:2.4
- 作者:T. Bachmann;A. Alexeev;W. Koelmans;F. Zipoli;A. Ott;C. Dou;A. Ferrari;V. K. Nagareddy;M. Craciun;V. Jonnalagadda;A. Curioni;A. Sebastian;E. Eleftheriou;C. Wright
- 通讯作者:T. Bachmann;A. Alexeev;W. Koelmans;F. Zipoli;A. Ott;C. Dou;A. Ferrari;V. K. Nagareddy;M. Craciun;V. Jonnalagadda;A. Curioni;A. Sebastian;E. Eleftheriou;C. Wright
Homogeneously bright, flexible and foldable lighting devices with functionalised graphene electrodes
具有功能化石墨烯电极的均匀明亮、灵活且可折叠的照明装置
- DOI:10.48550/arxiv.1606.05482
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Alonso E
- 通讯作者:Alonso E
Is graphene a good transparent electrode for photovoltaics and display applications?
- DOI:10.1049/iet-cds.2015.0121
- 发表时间:2015-11-01
- 期刊:
- 影响因子:1.3
- 作者:Bointon, Thomas H.;Russo, Saverio;Craciun, Monica Felicia
- 通讯作者:Craciun, Monica Felicia
High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition.
- DOI:10.1002/adma.201501600
- 发表时间:2015-07-22
- 期刊:
- 影响因子:0
- 作者:Bointon TH;Barnes MD;Russo S;Craciun MF
- 通讯作者:Craciun MF
High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter.
- DOI:10.1038/srep23051
- 发表时间:2016-03-14
- 期刊:
- 影响因子:4.6
- 作者:Borzenets IV;Shimazaki Y;Jones GF;Craciun MF;Russo S;Yamamoto M;Tarucha S
- 通讯作者:Tarucha S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Craciun其他文献
CVD Graphene/Lead (Pb)-based Cooper-pair splitter
CVD 石墨烯/铅 (Pb) 基库珀对分光器
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ivan V. Borzenets;Yuya Shimazaki;Gareth Jones;Monica Craciun;Saverio Russo;Michihasa Yamamoto;and Seigo Tarucha - 通讯作者:
and Seigo Tarucha
Monica Craciun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Craciun', 18)}}的其他基金
Manufacturing solar fabrics by electronic dyeing of textiles with 2D heterostructures
通过二维异质结构纺织品电子染色制造太阳能织物
- 批准号:
EP/V052306/1 - 财政年份:2021
- 资助金额:
$ 143.54万 - 项目类别:
Research Grant
Wearable light emitting transistors for future communication devices
用于未来通信设备的可穿戴发光晶体管
- 批准号:
EP/M001024/1 - 财政年份:2014
- 资助金额:
$ 143.54万 - 项目类别:
Research Grant
相似海外基金
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
- 批准号:
EP/M002489/3 - 财政年份:2018
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
- 批准号:
EP/M002489/2 - 财政年份:2016
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Materials by Design for Impact in Aerospace Engineering
工程奖学金促进增长:材料设计对航空航天工程的影响
- 批准号:
EP/M002322/2 - 财政年份:2015
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship
Engineering Fellowships For Growth: Designing Feedback Control in Biology for Robustness and Scalability
增长工程奖学金:设计生物学中的反馈控制以实现鲁棒性和可扩展性
- 批准号:
EP/M002454/1 - 财政年份:2015
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Systems and control engineering framework for robust and efficient synthetic biology
增长工程奖学金:用于稳健和高效合成生物学的系统和控制工程框架
- 批准号:
EP/M002187/1 - 财政年份:2015
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Next generation of lightweight composites - how far can we go?
增长工程奖学金:下一代轻质复合材料——我们能走多远?
- 批准号:
EP/M002500/1 - 财政年份:2014
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
- 批准号:
EP/M002306/1 - 财政年份:2014
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
- 批准号:
EP/M002489/1 - 财政年份:2014
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Solidification Processing of Alloys for Sustainable Manufacturing
增长工程奖学金:用于可持续制造的合金凝固加工
- 批准号:
EP/M002241/1 - 财政年份:2014
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship
Engineering Fellowships for Growth: Building advanced materials to treat vision loss
增长工程奖学金:构建先进材料来治疗视力丧失
- 批准号:
EP/M002209/1 - 财政年份:2014
- 资助金额:
$ 143.54万 - 项目类别:
Fellowship














{{item.name}}会员




