Warwick EPSRC Symposium on Fluctuation-driven Phenomena and Large Deviations

沃里克 EPSRC 波动驱动现象和大偏差研讨会

基本信息

  • 批准号:
    EP/M003620/1
  • 负责人:
  • 金额:
    $ 20.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The Warwick EPSRC mathematics symposium is organised annually by the University of Warwick with the support of the EPSRC for the benefit of the mathematical sciences community in the UK. It brings leading national and international experts together with UK researchers in a year-long programme of research activities focused on an emerging theme in the mathematical sciences. The proposed symposium for the 2015-16 academic year will concentrate on the theme of "Fluctuation-driven phenomena and large deviations". In very general terms, the symposium will constitute an interdisciplinary focus on understanding the consequences of the interplay between stochasticity and nonlinearity, a recurrent challenge in many areas of the mathematical sciences, engineering and industry.Stochastic processes play a fundamental role in the mathematical sciences, both as tools for constructing models and as abstract mathematical structures in their own right. When nonlinear interactions between stochastic processes are introduced, however, the rigorous understanding of the resulting equations in terms of stochastic analysis becomes very challenging. Mean field theories are useful heuristics which are commonly employed outside of mathematics for dealing with this problem. Mean field theories in one way or another usually involve replacing random variables by their mean and assuming that fluctuations about the mean are approximately Gaussian distributed. In some cases, such models provide a good description of the original system and can be rigorously justified. In many cases they do not. Understanding the latter case, where mean-field models fail, is the central challenge of this symposium. We use "fluctuation driven phenomena" as a generic term to describe the kinds of effects which are observed when mean field theories fail.The challenges stem from the fact that the rich phenomenology of deterministic nonlinear dynamics (singularities, nonlinear resonance, chaos and so forth) is reflected in the stochastic context by a variety of interesting and sometimes unintuitive behaviours: long range correlations, strongly non-Gaussian statistics, coherent structures, absorbing state phase transitions, heavy-tailed probability distributions and enhanced probabilities of large deviations. Such phenomena are found throughout mathematics, both pure and applied, the physical, biological and engineering sciences as well as presenting particular problems to industrialists and policymakers. Contemporary problems such as the forecasting of extreme weather events, the design of marine infrastructure to withstand so-called "rogue waves", quantifying the probability of fluctuation driven transitions or "tipping points" in the climate system or estimating the redundancy required to ensure that infrastructure systems are resilient to shocks all require a step change in our ability to model and predict such fluctuation-driven phenomena. The programme of research activities constituting this symposium will therefore range from the very theoretical to the very applied.At the theoretical end we have random matrix theory which has recently emerged as a powerful tool for analysing the statistics of stochastic processes which are strongly non-Gaussian without the need to go via perturbative techniques developed in the physical sciences such as the renormalisation group. At the applied end we have questions of existential importance to the insurance industry such as how to cost the risk of extreme natural disasters and quantify their interaction with risks inherent in human-built systems. In between we have research on the connections between large deviation theory and nonequilibrium statistical mechanics, extreme events in the Earth sciences, randomness in the biological sciences and the latest numerical algorithms for computing rare events, a topic which has seen strong growth recent years.
该沃里克EPSRC数学研讨会每年举办的沃里克大学的支持下,EPSRC的利益数学科学界在英国。它汇集了领先的国家和国际专家与英国研究人员在为期一年的研究活动计划集中在一个新兴的主题在数学科学。2015-16学年拟议的专题讨论会将集中讨论“波动驱动的现象和大偏差”的主题。在非常一般的条款,研讨会将构成一个跨学科的重点,了解随机性和非线性之间的相互作用的后果,在数学科学,工程和工业的许多领域经常性的挑战。随机过程中发挥了基本作用的数学科学,无论是作为工具,用于构建模型和抽象的数学结构本身的权利。然而,当引入随机过程之间的非线性相互作用时,从随机分析的角度对所得方程的严格理解变得非常具有挑战性。平均场理论是一种有用的数学方法,通常在数学之外用来处理这个问题。平均场理论以某种方式通常涉及用随机变量的平均值来代替随机变量,并假设平均值的波动近似为高斯分布。在某些情况下,这些模型提供了对原始系统的良好描述,并且可以被严格证明。在许多情况下,他们并不这样做。理解后一种情况,即平均场模型失效的情况,是本次研讨会的核心挑战。我们用“涨落驱动现象”来描述当平均场理论失效时所观察到的各种效应,挑战来自于这样一个事实,即确定性非线性动力学的丰富现象学(奇点,非线性共振,混沌等)在随机背景下反映为各种有趣的,有时是不直观的行为:长程相关,强非高斯统计,相干结构,吸收态相变,重尾概率分布和大偏差的增强概率。这种现象在整个数学中都可以找到,包括纯数学和应用数学,物理,生物和工程科学,以及向工业家和政策制定者提出特殊问题。诸如极端天气事件的预报、海洋基础设施的设计以抵御所谓的“巨浪”、量化波动驱动的气候系统过渡或“临界点”的概率或估计确保基础设施系统抵御冲击所需的冗余度等当代问题,都要求我们在建模和预测这种波动驱动的现象的能力方面发生重大变化。因此,本次研讨会的研究活动方案将从非常理论化的到非常实用的。在理论上,我们有随机矩阵理论,它是最近出现的一个强有力的工具,用于分析统计的随机过程,这是强非高斯,而不需要去通过微扰技术开发的物理科学,如重正化组。在应用端,我们有一些对保险业至关重要的问题,比如如何计算极端自然灾害的风险成本,以及如何量化它们与人为系统固有风险的相互作用。在这两者之间,我们有大偏差理论和非平衡统计力学,地球科学中的极端事件,生物科学中的随机性和计算罕见事件的最新数值算法之间的联系的研究,这是一个近年来增长强劲的主题。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stationary mass distribution and nonlocality in models of coalescence and shattering
聚结和破碎模型中的稳态质量分布和非定域性
  • DOI:
    10.48550/arxiv.1710.01875
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Connaughton C
  • 通讯作者:
    Connaughton C
Universality properties of steady driven coagulation with collisional evaporation
碰撞蒸发稳态驱动凝聚的普适性
  • DOI:
    10.1209/0295-5075/117/10002
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Connaughton C
  • 通讯作者:
    Connaughton C
Importance sampling variance reduction for the Fokker-Planck rarefied gas particle method
Fokker-Planck 稀薄气体粒子法的重要性采样方差减少
Derivation of mean-field equations for stochastic particle systems
随机粒子系统平均场方程的推导
Explosive condensation in symmetric mass transport models
对称质量传递模型中的爆炸凝结
  • DOI:
    10.1088/1742-5468/2015/11/p11031
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chau Y
  • 通讯作者:
    Chau Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colm Connaughton其他文献

Colm Connaughton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colm Connaughton', 18)}}的其他基金

Direct digital fabrication via multisystems integration of advanced manufacturing processes
通过先进制造工艺的多系统集成直接数字化制造
  • 批准号:
    EP/L017350/1
  • 财政年份:
    2014
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
Wave Turbulence in the Strongly Nonlinear Regime: Theory and Applications
强非线性区域中的波湍流:理论与应用
  • 批准号:
    EP/H051295/1
  • 财政年份:
    2011
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant

相似海外基金

ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
  • 批准号:
    EP/Z531182/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
  • 批准号:
    EP/V027395/2
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
  • 批准号:
    EP/X040844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
  • 批准号:
    EP/Y024052/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.58万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了