Expanding the limits of biomolecular simulations: revealing the mechanisms of blood clot formation using Fluctuating Finite Element Analysis.
扩大生物分子模拟的极限:使用波动有限元分析揭示血凝块形成的机制。
基本信息
- 批准号:EP/M004228/1
- 负责人:
- 金额:$ 31.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational simulation of biomolecules has proven to be a very useful approach during the past few decades, and is now considered essential in broad range of disciplines ranging from the molecular understanding of life to drug discovery. Molecular dynamics is so frequently used to calculate the dynamic behaviour of proteins at the atomistic level firstly due to the large number of protein crystal structures that are publicly available in the Protein Data Base, but also because this methodology is well established, and excellent software packages are freely available to the academic biomolecular sciences community. However, we are still far from simulating cellular dimensions and time scales of entire biological processes. This will not be solved by hardware improvements in the foreseeable future, especially as the continuous increasein computational power is slowing and may come to an end. As a consequence, new methodologies are needed to reach longer time- and length-scales.This fellowship proposes to join two cutting edge methodologies in coarse-grained protein modelling to overcome this situation. Specifically, I will work with the Fluctuating Finite Element Analysis that models proteins as a non-rigid continuum subjected to thermal fluctuations, and the Multi-Scale Coarse-Graining method that aims to describe simplified molecular interactions using a physically-based bottom-up approach.Once this methodology is ready, I will implement it within a scalable piece of software suitable for High Performance Computing, and will use this new tool to simulate the fibrin network self-assembly process, one of the key events in clot formation. This is a highly important biological system, as in vivo imbalance is related to a number of human pathologies, including heart and brain infarction. Structural data on the clot architecture has been shown to correlate with clinical data on cardiovascular diseases.I will use currently available experimental data to demonstrate the capabilities of the proposed methodology and software. Next, further simulations will shed light on association pathways and affinities leading to fibrin polymerisation, on the process of lateral aggregation of protofibrils, on the role of each of the known interaction sites, on the influence of the external flow, and on the effect that some pathological mutants have on the self-assembly process and the final structure of the clot.Full accomplishment of these objectives will result in significant advances in biomolecular modelling methodology, together with the release of a general purpose application for biomolecular simulations on the mesoscale, and medically relevant results on the clot formation process and structure.
在过去的几十年里,生物分子的计算模拟已经被证明是一种非常有用的方法,现在被认为是从生命的分子理解到药物发现的广泛学科中必不可少的。分子动力学是如此频繁地用于计算蛋白质在原子水平上的动力学行为,首先是由于蛋白质数据库中公开提供的大量蛋白质晶体结构,而且还因为这种方法已经很好地建立,并且优秀的软件包可以免费提供给学术生物分子科学界。然而,我们离模拟整个生物过程的细胞尺度和时间尺度还很远。在可预见的未来,这将无法通过硬件改进来解决,特别是随着计算能力的持续增长正在放缓并可能结束。因此,需要新的方法,以达到更长的时间和长度scales.This奖学金建议加入两个尖端的粗粒度蛋白质建模方法,以克服这种情况。具体来说,我将使用波动有限元分析,将蛋白质建模为受到热波动的非刚性连续体,以及多尺度粗粒化方法,旨在使用基于物理的自底向上方法描述简化的分子相互作用。一旦这种方法准备就绪,我将在适用于高性能计算的可扩展软件中实现它,并将使用这种新工具来模拟纤维蛋白网络自组装过程,这是凝块形成的关键事件之一。这是一个非常重要的生物系统,因为体内失衡与许多人类病理学有关,包括心脏和脑梗死。关于凝块结构的结构数据已经被证明与心血管疾病的临床数据相关,我将使用目前可用的实验数据来证明所提出的方法和软件的能力。接下来,进一步的模拟将阐明导致纤维蛋白聚合的缔合途径和亲和力,原纤维的侧向聚集过程,每个已知相互作用位点的作用,外部流动的影响,以及一些病理性突变体对自我的影响组装过程和凝块的最终结构。这些目标的全面实现将导致生物分子建模方法的重大进展,同时发布了一个用于中尺度生物分子模拟的通用应用程序,以及关于凝块形成过程和结构的医学相关结果。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluctuating Finite Element Analysis (FFEA): A continuum mechanics software tool for mesoscale simulation of biomolecules.
- DOI:10.1371/journal.pcbi.1005897
- 发表时间:2018-03
- 期刊:
- 影响因子:4.3
- 作者:Solernou A;Hanson BS;Richardson RA;Welch R;Read DJ;Harlen OG;Harris SA
- 通讯作者:Harris SA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Albert Crusat其他文献
Albert Crusat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Continuing Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
- 批准号:
DE240100664 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Discovery Early Career Researcher Award
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Research Grant
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
$ 31.69万 - 项目类别:
Research Grant














{{item.name}}会员




