Manufacturing Quantum Nano-LEGO Blocks for Electronics, Photonics, and Phononics Integrated Systems

制造用于电子、光子学和声学集成系统的量子纳米乐高积木

基本信息

  • 批准号:
    EP/M008975/1
  • 负责人:
  • 金额:
    $ 139.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

As the minimum feature size of the Si transistor is shrinking down, various quantum mechanical effects are observed even at room temperature operations. This includes the quantum tunnelling leakage currents and the capacitance decrease by quantum confinements. All of these effects, unfortunately, degrade the performance of transistors, and the reason is partially coming from the design principle of conventional transistors based on classical mechanics. New paradigm shift is expected to achieve the transition from classical to quantum technologies for innovations in high performance computing, secure communication, simulation, sensor, and metrology. However, many manufacturing challenges must be overcome to integrate quantum structures for real industrial applications, since quantum states are extremely sensitive to environmental disturbances. We must minimize the line-edge-roughness, thickness-non-uniformities, random dopant fluctuations, and interfacial defects. In this fellowship, a novel manufacturing process technology will be developed to fabricate various quantum structures, named Nano-LEGO Blocks, including quantum wells, nano-wires, quantum dots, pillars, and fins. These nano-structural building blocks will be fabricated by a combination of the state-of-the-art Si nanofabrication processes and the self-limiting wet etching. The nano-structures are defined by the crystallographic orientation with the atomically flat interface, and the quantum nature of the structures will be examined. By properly designing the process steps and the 3D device layouts, we can economically assemble these building blocks in large quantities with wafer scale in highly reliable, low-cost, and high-yield processes. We are also planning to introduce the manipulation probes in the chamber of our He-Ion-Microscope to manipulate the building blocks to construct the 3D structures by using the electrostatic force. The concept is based on the natural extension of LEGO Blocks to the nano-meter scale, i.e., starting from the several kinds of well-defined building blocks we can construct sophisticated technological arts by the arbitrary combinations of the blocks. As applications of this manufacturing technology, we will fabricate 3 devices: (1) Si/Ge Based Single Photon Source, (2) Si Single-Electron-Pump for quantum-metrology, (3) Si on-chip heat sink for energy harvesting.While our main purpose is to establish the comprehensive process technologies using nano-structural building blocks, we will find out real process issues and solutions in the actual device fabrications for identifying true industrial needs. The combinations of these building blocks will enable realization of new functionalities using the quantum nature of properties for various electronics, photonics, and phononics integrated system applications. The applications are not limited to quantum devices, and we will demonstrate on-chip heat sinks and low-loss Si photonic waveguide, which can immediately contribute to the energy saving in a big data centre for cloud computing.
由于硅晶体管的最小特征尺寸正在缩小,即使在室温下操作也可以观察到各种量子力学效应。这包括量子隧穿漏电流和量子限制引起的电容减小。不幸的是,所有这些效应都降低了晶体管的性能,部分原因是基于经典力学的传统晶体管的设计原理。新的范式转变有望实现从经典技术到量子技术的过渡,以实现高性能计算、安全通信、仿真、传感器和计量学方面的创新。然而,必须克服许多制造挑战以将量子结构集成用于真实的工业应用,因为量子状态对环境干扰极其敏感。我们必须尽量减少线边缘粗糙度,厚度不均匀性,随机掺杂波动,和界面缺陷。在这项研究中,将开发一种新的制造工艺技术来制造各种量子结构,称为纳米乐高块,包括量子威尔斯,纳米线,量子点,柱和鳍。这些纳米结构的构建块将通过最先进的硅纳米纤维工艺和自限制湿法蚀刻的组合来制造。纳米结构由具有原子平坦界面的晶体学取向定义,并且将检查结构的量子性质。通过正确设计工艺步骤和3D器件布局,我们可以在高度可靠、低成本和高产量的工艺中以晶圆规模经济地大量组装这些构建模块。我们还计划在我们的氦离子显微镜的腔室中引入操纵探针,以通过使用静电力操纵构建块来构建3D结构。这个概念是基于乐高积木自然延伸到纳米尺度,即,从几种明确的积木开始,我们可以通过积木的任意组合来构建复杂的技术艺术。作为该制造技术的应用,我们将制造3种器件:(1)Si/Ge基单光子源,(2)用于量子计量的Si单电子泵,(3)用于能量收集的Si片上热沉。虽然我们的主要目的是建立使用纳米结构构建块的综合工艺技术,我们将在实际的器件制造中找出真实的工艺问题和解决方案,以确定真正的工业需求。这些构建块的组合将能够使用各种电子学、光子学和声子学集成系统应用的特性的量子性质来实现新的功能。这些应用不仅限于量子器件,我们还将展示片上散热器和低损耗Si光子波导,这些器件可以立即为云计算大数据中心的节能做出贡献。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Whispering gallery mode resonances from Ge micro-disks on suspended beams
  • DOI:
    10.3389/fmats.2015.00043
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Al-Attili, Abdelrahman Zaher;Kako, Satoshi;Saito, Shinichi
  • 通讯作者:
    Saito, Shinichi
Enhanced light emission from improved homogeneity in biaxially suspended Germanium membranes from curvature optimization
  • DOI:
    10.1364/oe.25.022911
  • 发表时间:
    2017-09-18
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Burt, Daniel;Al-Attili, Abdelrahman;Kelsall, Robert
  • 通讯作者:
    Kelsall, Robert
Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon
  • DOI:
    10.7567/jjap.54.052101
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Al-Attili, Abdelrahman Z.;Kako, Satoshi;Saito, Shinichi
  • 通讯作者:
    Saito, Shinichi
Comparison of uniaxial and polyaxial suspended germanium bridges in terms of mechanical stress and thermal management towards a CMOS compatible light source.
单轴和多轴悬浮锗桥在机械应力和热管理方面对 CMOS 兼容光源的比较。
  • DOI:
    10.1364/oe.27.037846
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Burt D
  • 通讯作者:
    Burt D
Low-loss silicon rectangular waveguides fabricated by anisotoropic wet etching for roughness reduction
采用各向异性湿法刻蚀降低粗糙度的低损耗硅矩形波导
  • DOI:
    10.1109/group4.2015.7305962
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arimoto H
  • 通讯作者:
    Arimoto H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shinichi Saito其他文献

特集「日本研究とトランスナショナリズム」に寄せて
关于专题“日本研究与跨国主义”
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Okada Isamu;Yanagi Itaru;Kubo Yoshiaki;Kikuchi Hirokazu;髙田 圭;柳至・岡田勇・菊池啓一・久保慶明;中嶋英介;Shinichi Saito;髙田 圭
  • 通讯作者:
    髙田 圭
COVID-19対策に関わる認識・行動変容と医療信頼
与 COVID-19 对策相关的意识/行为改变和医疗信任
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Okada Isamu;Yanagi Itaru;Kubo Yoshiaki;Kikuchi Hirokazu;髙田 圭;柳至・岡田勇・菊池啓一・久保慶明;中嶋英介;Shinichi Saito;髙田 圭;中嶋英介;岡田勇・柳至・久保慶明
  • 通讯作者:
    岡田勇・柳至・久保慶明
スラリー粘度低減の微粒子添加条件を知ろう
下面我们来了解一下添加细颗粒降低浆料粘度的条件。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鈴木智貴;三田貴臣;飯田真介ら18名;中嶋英介;Kei Takata;鹿毛利枝子・北村亘・青木栄一・砂原庸介;Shinichi Saito;岡本雄貴,吉田幹生,白川善幸;中嶋英介;Kei Takata;青木栄一・王コウビョウ・神林寿幸・伊藤正次・河合晃一・北村亘・清水唯一朗・曽我謙悟・手塚洋輔・村上裕一;Shinichi Saito;吉田幹生,白川善幸
  • 通讯作者:
    吉田幹生,白川善幸
微小粒子添加スラリーの濃度とpHが粘度低減効果に及ぼす影響
添加微粒浆料的浓度和pH值对降粘效果的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinichi Saito;Kei Takata;恩田美紀,下坂厚子,吉田幹生,白川善幸
  • 通讯作者:
    恩田美紀,下坂厚子,吉田幹生,白川善幸
Experimental study of the water spray cooling on the heating surface with particle layer.(Effect of the material of nanoparticle)
颗粒层受热面喷水冷却实验研究(纳米颗粒材质的影响)
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koichiro Sezaki;Takesi Hayasida;Mitsuo Iwamoto;Shinichi Saito;Masato Akamatsu
  • 通讯作者:
    Masato Akamatsu

Shinichi Saito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shinichi Saito', 18)}}的其他基金

Innovation by Strongly Correlated Photonic System
强相关光子系统创新
  • 批准号:
    18K19958
  • 财政年份:
    2020
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Home-Returning Researcher Development Research)
Si Fin Optical Modulator for Low Power Interconnection
用于低功率互连的硅鳍光调制器
  • 批准号:
    EP/M009416/1
  • 财政年份:
    2014
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
  • 批准号:
    2328096
  • 财政年份:
    2024
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Standard Grant
Quantum-enabled Nano-scale Rheology Of The Microbial Seawater Environment
微生物海水环境的量子纳米级流变学
  • 批准号:
    EP/X035689/1
  • 财政年份:
    2023
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Research Grant
Quantum-enabled nano-scale rheology of the microbial seawater environment
微生物海水环境的量子纳米级流变学
  • 批准号:
    EP/X035905/1
  • 财政年份:
    2023
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Research Grant
EAGER: Quantum Manufacturing: In-situ Nano-Patterned Topological Josephson Junctions
EAGER:量子制造:原位纳米图案拓扑约瑟夫森结
  • 批准号:
    2240489
  • 财政年份:
    2023
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Standard Grant
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2022
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Discovery Grants Program - Individual
Study on novel helium-3 quantum fluids with various dimensionalities and correlations designed by nano-sized environments
纳米环境设计的各种维度和相关性的新型氦3量子流体的研究
  • 批准号:
    22K03510
  • 财政年份:
    2022
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of visualized nano-DDS agents targeting brain by RNA aptamers and quantum dots
通过RNA适体和量子点开发针对大脑的可视化纳米DDS药剂
  • 批准号:
    22K19909
  • 财政年份:
    2022
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2021
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Discovery Grants Program - Individual
RII Track 4: Metrology and spectroscopy of individual nanomagnets dynamics using quantum sensor-based (NV- center) nano-magnetometry
RII 轨道 4:使用基于量子传感器(NV 中心)纳米磁力测量的单个纳米磁体动力学的计量学和光谱学
  • 批准号:
    2033210
  • 财政年份:
    2021
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Standard Grant
Tip-Enhanced Molecular and Quantum Cavity Nano-Optics
尖端增强分子和量子腔纳米光学
  • 批准号:
    2108009
  • 财政年份:
    2021
  • 资助金额:
    $ 139.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了