The Formation of Singularities in Ricci Flow and Harmonic Ricci Flow
里奇流和谐波里奇流奇点的形成
基本信息
- 批准号:EP/M011224/1
- 负责人:
- 金额:$ 12.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal sits within the broad field of nonlinear partial differential equations (PDE), an area of mathematics with wide-ranging applications from practical issues in engineering, science and industry to some of the most difficult problems in geometry and topology. Such an equation could model for example a chemical or industrial process, be a rule to correctly define the price of a financial option, or more abstractly describe the shape or the evolution of a geometric object. It is the last mentioned type of PDE that this proposal focuses on.Relating the local geometry and global topology of manifolds constitutes one of the main aims of differential geometry. While this area of pure mathematics has always seen steady progress, it was the introduction of techniques from analysis - and in particular heat flow methods - that revolutionised it completely and led to some of the most spectacular recent results such as Perelman's resolution of the Poincaré and Geometrisation Conjectures, the 1/4-pinched Differentiable Sphere Theorem of Brendle and Schoen, and Brendle's proof of the Lawson Conjecture. It therefore comes as no surprise that the report of the EPSRC Pure Mathematics Workshop 2012 as well as the International Review of Mathematical Sciences 2010 come to the conclusion that the part of geometry that needs most strengthening in the UK is the connection between geometric analysis and nonlinear partial differential equations. I propose to further develop the UK's research infrastructure in this field through world-leading research that borrows modern ideas from analysis, geometry and topology and unites and transforms them into completely new and powerful techniques and results. More precisely, the proposed research consists of the following themes: understanding higher-dimensional Ricci Flow singularities, investigating stability properties of singularity models, developing theories of generic Ricci Flow in arbitrary dimensions and of weak Ricci Flow in dimension three, and analysing the singularity formation in the Harmonic Ricci Flow. While these themes are all connected and intertwined, I have made an effort to crystallise out formally independent objectives. The results obtained from the proposed research will not only have a major impact on geometry and topology, but also open up the field of geometric flows for applications in physics and engineering.
该建议位于非线性偏微分方程(PDE)的广泛领域,这是一个数学领域,具有广泛应用程序,从工程,科学和工业的实际问题到几何和拓扑中一些最困难的问题。这样的方程式可以建模,例如化学或工业过程,是正确定义财务选择价格的规则,或更抽象地描述几何对象的形状或演变。这是该提案重点关注的最后提到的PDE类型。将局部几何形状和歧管的全球拓扑结合起来构成了差异几何的主要目的之一。虽然这一纯数学领域一直保持稳定的进步,但正是从分析(特别是热流方法)引入技术的引入,这完全彻底改变了它,并导致了一些最壮观的结果,例如佩雷尔曼(Perelman)解决了彭康(Perelman)和几何构度的猜想,即1/4固定的跨越构造的统治和劳伦(Schoen)和劳伦(Schoen)和布伦德尔(Brendle)的统治,并构成了布伦德尔(Schoen),布伦德尔(Schoen)和布伦德尔(Brendle)的规定。因此,EPSRC纯数学研讨会的报告以及2010年的国际数学科学评论得出的结论是,英国需要加强最大的几何形状的一部分是几何分析与非线性部分偏微分方程之间的联系,这不足为奇。我建议通过世界领先的研究进一步发展英国的研究基础设施,从分析,几何学和拓扑和单位借用现代思想,并将其转变为全新,有力的技术和结果。更确切地说,拟议的研究包括以下主题:了解较高维度的RICCI流动奇异性,研究奇异性模型的稳定性特性,在任意维度中开发了通用RICCI流动的理论,而Dimension中的RICCI流量较弱,并在第三维度中发展了RICCI流动,并分析了谐波RICCI流动中的奇异性。尽管这些主题都是连接和交织在一起的,但我还是努力将正式独立的目标结晶。从拟议的研究中获得的结果不仅会对几何和拓扑产生重大影响,而且还为物理和工程应用程序开辟了几何流量。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Qualitative and quantitative estimates for minimal hypersurfaces with bounded index and area
具有有界指数和面积的最小超曲面的定性和定量估计
- DOI:10.1090/tran/7168
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Buzano R
- 通讯作者:Buzano R
The moduli space of two-convex embedded spheres
- DOI:10.4310/jdg/1622743139
- 发表时间:2016-07
- 期刊:
- 影响因子:2.5
- 作者:R. Buzano;Robert Haslhofer;Or Hershkovits
- 通讯作者:R. Buzano;Robert Haslhofer;Or Hershkovits
The Moduli Space of Two-Convex Embedded Tori
二凸嵌入环面的模空间
- DOI:10.1093/imrn/rnx125
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Buzano R
- 通讯作者:Buzano R
The Chern-Gauss-Bonnet formula for singular non-compact four-dimensional manifolds
奇异非紧四维流形的 Chern-Gauss-Bonnet 公式
- DOI:10.4310/cag.2019.v27.n8.a2
- 发表时间:2019
- 期刊:
- 影响因子:0.7
- 作者:Buzano R
- 通讯作者:Buzano R
The Higher-Dimensional Chern-Gauss-Bonnet Formula for Singular Conformally Flat Manifolds
奇异共形扁平流形的高维Chern-Gauss-Bonnet公式
- DOI:10.1007/s12220-018-0029-z
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Buzano R
- 通讯作者:Buzano R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reto Buzano其他文献
Reto Buzano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reto Buzano', 18)}}的其他基金
Advances in Mean Curvature Flow: Theory and Applications
平均曲率流的进展:理论与应用
- 批准号:
EP/S012907/1 - 财政年份:2019
- 资助金额:
$ 12.81万 - 项目类别:
Research Grant
相似国自然基金
偏振莫比乌斯带奇异性与康普顿散射的光电耦合动力学
- 批准号:12332002
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
非定常奇异摄动问题的各向异性时空自适应有限元方法
- 批准号:12301467
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
具奇异性偏微分方程谱元法和间断谱元法的误差估计
- 批准号:12271128
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑剪切荷载及变形局部化时灾变破坏的幂律奇异性前兆及灾变预测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ricci flow from spaces with edge type conical singularities
来自具有边缘型圆锥奇点的空间的利玛窦流
- 批准号:
2443749 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别:
Studentship
Ricci flow of manifolds with singularities at infinity
无穷远奇点流形的 Ricci 流
- 批准号:
EP/T019824/1 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别:
Research Grant
Ricci Flows through Singularities and Ricci Flows with Bounded Scalar Curvature
穿过奇点的里奇流和具有有界标量曲率的里奇流
- 批准号:
1906500 - 财政年份:2019
- 资助金额:
$ 12.81万 - 项目类别:
Continuing Grant
Analysis of Singularities of the Ricci Flow
里奇流的奇点分析
- 批准号:
1811845 - 财政年份:2018
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Singularities of the Kahler-Ricci Flow, Einstein 4-Manifolds and Seiberg-Witten Theory
Kahler-Ricci 流的奇点、爱因斯坦 4-流形和 Seiberg-Witten 理论
- 批准号:
9803549 - 财政年份:1998
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant