The Formation of Singularities in Ricci Flow and Harmonic Ricci Flow
里奇流和谐波里奇流奇点的形成
基本信息
- 批准号:EP/M011224/1
- 负责人:
- 金额:$ 12.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal sits within the broad field of nonlinear partial differential equations (PDE), an area of mathematics with wide-ranging applications from practical issues in engineering, science and industry to some of the most difficult problems in geometry and topology. Such an equation could model for example a chemical or industrial process, be a rule to correctly define the price of a financial option, or more abstractly describe the shape or the evolution of a geometric object. It is the last mentioned type of PDE that this proposal focuses on.Relating the local geometry and global topology of manifolds constitutes one of the main aims of differential geometry. While this area of pure mathematics has always seen steady progress, it was the introduction of techniques from analysis - and in particular heat flow methods - that revolutionised it completely and led to some of the most spectacular recent results such as Perelman's resolution of the Poincaré and Geometrisation Conjectures, the 1/4-pinched Differentiable Sphere Theorem of Brendle and Schoen, and Brendle's proof of the Lawson Conjecture. It therefore comes as no surprise that the report of the EPSRC Pure Mathematics Workshop 2012 as well as the International Review of Mathematical Sciences 2010 come to the conclusion that the part of geometry that needs most strengthening in the UK is the connection between geometric analysis and nonlinear partial differential equations. I propose to further develop the UK's research infrastructure in this field through world-leading research that borrows modern ideas from analysis, geometry and topology and unites and transforms them into completely new and powerful techniques and results. More precisely, the proposed research consists of the following themes: understanding higher-dimensional Ricci Flow singularities, investigating stability properties of singularity models, developing theories of generic Ricci Flow in arbitrary dimensions and of weak Ricci Flow in dimension three, and analysing the singularity formation in the Harmonic Ricci Flow. While these themes are all connected and intertwined, I have made an effort to crystallise out formally independent objectives. The results obtained from the proposed research will not only have a major impact on geometry and topology, but also open up the field of geometric flows for applications in physics and engineering.
该建议属于非线性偏微分方程(PDE)的广泛领域,这是一个广泛应用的数学领域,从工程,科学和工业的实际问题到一些最困难的几何和拓扑问题。这样的方程可以为化学或工业过程建模,是正确定义金融期权价格的规则,或者更抽象地描述几何物体的形状或演变。本建议关注的是最后提到的PDE类型。将流形的局部几何和全局拓扑联系起来是微分几何的主要目的之一。虽然纯数学的这一领域一直在稳步发展,但正是分析技术的引入——尤其是热流方法——彻底改变了这一领域,并导致了最近一些最引人注目的结果,如佩雷尔曼对庞加莱猜想和几何化猜想的解决,布伦德尔和舍恩的1/4缩微球定理,以及布伦德尔对劳森猜想的证明。因此,EPSRC纯数学研讨会2012年的报告以及国际数学科学评论2010年得出结论,英国最需要加强的几何部分是几何分析和非线性偏微分方程之间的联系,这一点也不奇怪。我建议通过世界领先的研究进一步发展英国在这一领域的研究基础设施,从分析、几何和拓扑中借鉴现代思想,并将它们结合起来,转化为全新的、强大的技术和成果。更准确地说,我们的研究包括以下几个主题:理解高维里奇流奇点,研究奇点模型的稳定性,发展任意维广义里奇流理论和三维弱里奇流理论,分析谐波里奇流奇点的形成。虽然这些主题都相互联系、交织在一起,但我努力将形式上独立的目标具体化。所提出的研究结果不仅将对几何和拓扑学产生重大影响,而且还将开辟几何流在物理和工程中的应用领域。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Qualitative and quantitative estimates for minimal hypersurfaces with bounded index and area
具有有界指数和面积的最小超曲面的定性和定量估计
- DOI:10.1090/tran/7168
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Buzano R
- 通讯作者:Buzano R
The moduli space of two-convex embedded spheres
- DOI:10.4310/jdg/1622743139
- 发表时间:2016-07
- 期刊:
- 影响因子:2.5
- 作者:R. Buzano;Robert Haslhofer;Or Hershkovits
- 通讯作者:R. Buzano;Robert Haslhofer;Or Hershkovits
The Moduli Space of Two-Convex Embedded Tori
二凸嵌入环面的模空间
- DOI:10.1093/imrn/rnx125
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Buzano R
- 通讯作者:Buzano R
The Chern-Gauss-Bonnet formula for singular non-compact four-dimensional manifolds
奇异非紧四维流形的 Chern-Gauss-Bonnet 公式
- DOI:10.4310/cag.2019.v27.n8.a2
- 发表时间:2019
- 期刊:
- 影响因子:0.7
- 作者:Buzano R
- 通讯作者:Buzano R
Gaussian upper bounds for the heat kernel on evolving manifolds
- DOI:10.1112/jlms.12793
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:R. Buzano;Louis Yudowitz
- 通讯作者:R. Buzano;Louis Yudowitz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reto Buzano其他文献
Reto Buzano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reto Buzano', 18)}}的其他基金
Advances in Mean Curvature Flow: Theory and Applications
平均曲率流的进展:理论与应用
- 批准号:
EP/S012907/1 - 财政年份:2019
- 资助金额:
$ 12.81万 - 项目类别:
Research Grant
相似海外基金
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
- 批准号:
2422557 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
- 批准号:
DP240101934 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Discovery Projects
Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
- 批准号:
2401041 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
- 批准号:
2907441 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Studentship
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
- 批准号:
2247702 - 财政年份:2023
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Interaction of singularities and number theory
奇点与数论的相互作用
- 批准号:
23H01070 - 财政年份:2023
- 资助金额:
$ 12.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 12.81万 - 项目类别:
Fellowship














{{item.name}}会员




