Analysis and Optimization of Cache Resource Allocation for Energy-Efficient Information-Centric Networking
节能信息中心网络的缓存资源分配分析与优化
基本信息
- 批准号:EP/M013936/1
- 负责人:
- 金额:$ 11.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is predicted that Internet video streaming and downloads will account for more than 76 percent of all consumer Internet traffic in 2018. The tremendous growth of multimedia traffic has given rise to the demand for highly scalable and efficient content retrieval and dissemination in the Internet. However, the Internet was originally designed to enable host-to-host communication and lacks natural support for content distribution. In this context, Information-Centric Networking (ICN) has emerged as a new paradigm for future Internet, where the network interprets, processes, and delivers name-identified content to the users independently of the host location. ICN deploys in-network caching that enables content to be retrieved from multiple locations to achieve low dissemination latency and network traffic reduction. Serving as its fundamental building block, efficient in-network caching is vitally important for ICN. The distinct features of in-network caching such as transparency, ubiquity and fine-granularity have made traditional caching theory, models and optimization approaches inapplicable to ICN caches. Therefore, significant research efforts have been devoted to tackling the very challenging problem of in-network caching. The existing research works have been primarily focused on the simulation studies of ICN caching. However, analytical modelling of ICN cache networks is indispensable for the understanding of the intrinsic behaviors and features of in-network caching. The analytical models reported in the current literature for ICN mainly adopt unrealistic assumptions, such as independent reference model and unknown chunk-level object popularity, and are commonly based on the inefficient Leave Copy Everywhere (LCE) cache decision policy only. Furthermore, due to both increasing energy cost and CO2 emission, energy efficiency of networks and systems becomes a dramatically growing concern. Consequently, energy-efficiency of ICN has also been investigated by some studies, which are mainly based on unrealistic models of topology and content requests. To the best of our knowledge, analytical modelling and optimization of cache resource allocation for energy-efficient information-centric networking with transparent, ubiquitous and fine-granular caches has not been reported in the existing literature.This project will investigate in-network cache resource allocation to achieve energy-efficient and timely content dissemination in the context of Information-Centric Networks. To tackle this challenging problem progressively, our work will be focused on three major tasks: 1) design of an intelligent cache decision policy with low complexity for ICN to reduce cache redundancy, increase the cache diversity and leverage the correlation between content requests; 2) development of novel analytical tools for evaluating the energy efficiency and performance of the proposed cache decision policy in terms of cache hit ratio and request response time with multimedia applications and heterogeneous network conditions; 3) development of a centralized optimization algorithm to investigate the impact of traffic conditions and network environments on the efficiency of cache allocation and a distributed cache allocation scheme that allocates appropriate cache locations of content chunks to minimize the energy consumption. The insights into energy-efficient cache allocation obtained in the aforementioned Tasks 1 and 2 will be feed into the distributed management scheme design in Task 3. The research proposed in the project is believed to among the first of its kind on the analysis and optimization of in-network cache allocation for energy-efficient ICN. The implications of this research will contribute directly to ICN in-network caching in both theoretical and practical sides and pave the way for future green Internet with multimedia applications.
据预测,2018年互联网视频流和下载将占所有消费者互联网流量的76%以上。多媒体流量的巨大增长已经引起了对互联网中高度可扩展和高效的内容检索和分发的需求。然而,互联网最初被设计为支持主机到主机的通信,缺乏对内容分发的自然支持。在这种背景下,以信息为中心的网络(ICN)已经成为未来互联网的一个新的范例,其中网络独立于主机位置解释,处理并向用户提供名称标识的内容。ICN部署了网内缓存,使内容能够从多个位置检索,以实现低传播延迟和减少网络流量。作为其基本构建块,高效的网络内缓存对ICN至关重要。网内缓存的透明性、普适性和细粒度等特点使得传统的缓存理论、模型和优化方法不适用于ICN缓存。因此,大量的研究工作已经致力于解决非常具有挑战性的问题,在网络缓存。现有的研究工作主要集中在ICN缓存的仿真研究上。然而,ICN缓存网络的分析建模是必不可少的内在行为和网络缓存的功能的理解。目前ICN的分析模型主要采用不切实际的假设,如独立的参考模型和未知的块级对象流行度,并且通常仅基于低效的Leave Copy Everywhere(LCE)缓存决策策略。此外,由于增加的能源成本和CO2排放,网络和系统的能源效率成为一个显着增长的关注。因此,ICN的能源效率也被一些研究,这主要是基于不切实际的模型的拓扑结构和内容请求。据我们所知,分析建模和优化的高速缓存资源分配的节能信息为中心的网络与透明的,无处不在的和细粒度的高速缓存还没有在现有的literation.This项目将调查在网络高速缓存资源分配,以实现节能和及时的内容传播的信息为中心的网络的背景下。为了逐步解决这个具有挑战性的问题,我们的工作将集中在三个主要任务上:1)设计一个低复杂度的ICN智能缓存决策策略,以减少缓存冗余,增加该高速缓存的多样性和利用内容请求之间的相关性;(二)开发新的分析工具,用于根据缓存命中率评估拟议缓存决策策略的能效和性能以及多媒体应用和异构网络条件下的请求响应时间; 3)开发集中式优化算法以研究流量条件和网络环境对缓存分配效率的影响,以及分布式缓存分配方案,其分配内容块的适当缓存位置以最小化能量消耗。在前面提到的任务1和2中获得的对节能缓存分配的见解将被馈送到任务3中的分布式管理方案设计中。该项目中提出的研究被认为是同类研究中的第一个分析和优化节能ICN的网络缓存分配的研究。本研究的意义将直接有助于ICN在网络缓存的理论和实践方面,为未来的绿色互联网与多媒体应用铺平道路。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A trustworthy and energy-aware routing protocol in software-defined wireless mesh networks
软件定义无线网状网络中值得信赖且节能的路由协议
- DOI:10.1016/j.compeleceng.2016.10.015
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Hui Lin;Jia Hu;Li Xu;YouLiang Tian;Lei Liu;Stewart Blakeway
- 通讯作者:Stewart Blakeway
A Context Aware Reputation Mechanism for Enhancing Big Data Veracity in Mobile Cloud Computing
- DOI:10.1109/cit/iucc/dasc/picom.2015.304
- 发表时间:2015-10
- 期刊:
- 影响因子:0
- 作者:Hui Lin;Jia Hu;Jiajia Liu;Li Xu;Yulei Wu
- 通讯作者:Hui Lin;Jia Hu;Jiajia Liu;Li Xu;Yulei Wu
Performance Evaluation of Information-Centric Networking for Multimedia Services
- DOI:10.1109/sose.2016.52
- 发表时间:2016-03
- 期刊:
- 影响因子:0
- 作者:Haozhe Wang;G. Min;Jia Hu;W. Miao;N. Georgalas
- 通讯作者:Haozhe Wang;G. Min;Jia Hu;W. Miao;N. Georgalas
Cost-Aware Optimisation of Cache Allocation for Information-Centric Networking
- DOI:10.1109/glocom.2017.8254032
- 发表时间:2017-12
- 期刊:
- 影响因子:0
- 作者:Haozhe Wang;Jia Hu;G. Min;W. Miao;N. Georgalas
- 通讯作者:Haozhe Wang;Jia Hu;G. Min;W. Miao;N. Georgalas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JIA HU其他文献
JIA HU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JIA HU', 18)}}的其他基金
Real-Time Federated Learning at the Wireless Edge via Algorithm-Hardware Co-Design
通过算法-硬件协同设计在无线边缘进行实时联合学习
- 批准号:
EP/X019160/1 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Research Grant
Analysis and Optimization of Cache Resource Allocation for Energy-Efficient Information-Centric Networking
节能信息中心网络的缓存资源分配分析与优化
- 批准号:
EP/M013936/2 - 财政年份:2015
- 资助金额:
$ 11.72万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
- 批准号:
AH/Z000041/1 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant