Real-Time Federated Learning at the Wireless Edge via Algorithm-Hardware Co-Design

通过算法-硬件协同设计在无线边缘进行实时联合学习

基本信息

  • 批准号:
    EP/X019160/1
  • 负责人:
  • 金额:
    $ 25.67万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The past years have witnessed a rapidly growing number of wirelessly-connected devices such as smartphones and Internet-of-Things (IoT) equipment, which generate ever-increasing amounts of data driving key Artificial Intelligence (AI) applications. However, users are increasingly unwilling to allow their private data (such as media, location, or sensor data) to be uploaded to a central location (e.g., cloud datacentre) for training Machine Learning (ML) models, and data-protection laws such as the Data Protection Act 2018 are growing more restrictive towards data usage. Federated Learning (FL) is a game-changing technology conceived to address the growing data privacy concern by moving training from the datacentre to user devices at the network edge, allowing sensitive data to remain on the devices where it was generated. FL has enormous potential for real-world, privacy-sensitive applications such as autonomous driving, diagnostic healthcare, and predictive maintenance.The operating environment for FL at the edge is extremely challenging for a variety of reasons: 1) the data owned by FL clients is highly heterogeneous (in regard to data distribution, quality, and quantity) and dynamic (data distributions change over time); 2) the hardware devices have diverse computing and communication capabilities with stringent resource constraints (e.g., battery power); and 3) FL clients work under unreliable wireless edge network conditions. Hence, despite FL's huge promise, there are considerable barriers to its wider real-world adoption for mission-critical AI applications that need real-time, on-demand responses, caused by several grand challenges: Challenge 1) lack of FL algorithms delivering consistent performance for dynamic client data, diverse client hardware, and unreliable wireless connections simultaneously; Challenge 2) lack of rigorous theoretical analyses of real-time, real-world FL algorithms; Challenge 3) lack of optimised, energy-efficient, versatile hardware acceleration for real-time FL.To address these important challenges, this project will create revolutionary algorithm-hardware co-design approaches to make FL a real-time process with unparalleled speed, performance, and energy-efficiency at the wireless edge, capable of meeting the stringent requirements of mission-critical applications. This research will pioneer a set of original methods and innovative technologies including: 1) disruptive lightweight hardware-aware FL algorithms that significantly reduce communication, computing, and energy costs while achieving fast model updates; 2) rigorous mathematical analyses of the proposed algorithms to prove their convergence rates and offer theoretical insights into how they perform under various edge network conditions; 3) an automatic hardware-software co-optimisation framework integrating specialised training-acceleration and power-reduction methods to realise optimised, energy-efficient hardware acceleration; and 4) a unique prototype system that will integrate the designed FL hardware accelerator and real-time FL algorithms and be evaluated in a realistic wireless edge networking testbed.This project has the potential to transform FL from a lengthy and disjointed process to a continuous, real-time procedure with concurrent model training and deployment. The proposed research will contribute to the UK's digital transformation and green economy by creating ground-breaking technologies for creating innovative AI-empowered products with significantly improved performance and energy-efficiency while complying with strict data-privacy protection.
过去几年见证了智能手机和物联网(IoT)设备等无线连接设备数量的快速增长,这些设备产生了越来越多的数据,驱动着关键的人工智能(AI)应用。然而,用户越来越不愿意允许他们的私有数据(如媒体、位置或传感器数据)被上传到中央位置(例如,云数据中心)以用于训练机器学习(ML)模型,并且数据保护法(如2018年数据保护法)对数据的使用越来越严格。联合学习(FL)是一种改变游戏规则的技术,旨在通过将培训从数据中心转移到网络边缘的用户设备来解决日益增长的数据隐私问题,允许敏感数据保留在生成这些数据的设备上。FL在现实世界中具有巨大的隐私敏感应用的潜力,如自动驾驶、诊断医疗保健和预测性维护。FL在边缘的操作环境具有极大的挑战性,原因包括:1)FL客户端拥有的数据高度异构性(关于数据分布、质量和数量)和动态(数据分布随时间变化);2)硬件设备具有多样化的计算和通信能力,且具有严格的资源限制(例如,电池功率);以及3)FL客户端工作在不可靠的无线边缘网络条件下。因此,尽管FL有着巨大的前景,但由于以下几个重大挑战,它在需要实时、按需响应的任务关键型人工智能应用程序的实际应用中存在相当大的障碍:挑战1)缺乏同时为动态客户端数据、多样化的客户端硬件和不可靠的无线连接提供一致性能的FL算法;挑战2)缺乏对实时、真实世界的FL算法的严格理论分析;挑战3)缺乏优化的、节能的、通用的实时FL硬件加速。为了解决这些重要挑战,该项目将创建革命性的算法-硬件协同设计方法,使FL成为无线边缘具有无与伦比的速度、性能和能效的实时过程,能够满足关键任务应用的严格要求。这项研究将开创一套独创的方法和创新技术,包括:1)破坏性的轻量级硬件感知FL算法,在实现快速模型更新的同时显著降低通信、计算和能源成本;2)对所提出的算法进行严格的数学分析,以证明其收敛速度,并提供关于它们在各种边缘网络条件下的性能的理论见解;3)集成专门的训练加速和功率降低方法的自动硬件-软件协同优化框架,以实现优化的、节能的硬件加速;和4)一个独特的原型系统,它将集成所设计的FL硬件加速器和实时FL算法,并在现实的无线边缘网络测试中进行评估,该项目有可能将FL从一个漫长而分散的过程转变为一个连续的、实时的过程,同时进行模型训练和部署。拟议的研究将通过创造突破性技术来创造创新的人工智能产品,显著提高性能和能效,同时遵守严格的数据隐私保护,从而为英国的数字转型和绿色经济做出贡献。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Faster Federated Learning With Decaying Number of Local SGD Steps
Federated Ensemble Model-Based Reinforcement Learning in Edge Computing
  • DOI:
    10.1109/tpds.2023.3264480
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Jin Wang;Jia Hu;Jed Mills;G. Min;Ming Xia;N. Georgalas
  • 通讯作者:
    Jin Wang;Jia Hu;Jed Mills;G. Min;Ming Xia;N. Georgalas
Lightweight Blockchain-Empowered Secure and Efficient Federated Edge Learning
  • DOI:
    10.1109/tc.2023.3293731
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Rui Jin;Jia Hu;Geyong Min;Jed Mills
  • 通讯作者:
    Rui Jin;Jia Hu;Geyong Min;Jed Mills
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JIA HU其他文献

JIA HU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JIA HU', 18)}}的其他基金

Analysis and Optimization of Cache Resource Allocation for Energy-Efficient Information-Centric Networking
节能信息中心网络的缓存资源分配分析与优化
  • 批准号:
    EP/M013936/1
  • 财政年份:
    2015
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Research Grant
Analysis and Optimization of Cache Resource Allocation for Energy-Efficient Information-Centric Networking
节能信息中心网络的缓存资源分配分析与优化
  • 批准号:
    EP/M013936/2
  • 财政年份:
    2015
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Research Grant

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
  • 批准号:
    71671098
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
  • 批准号:
    11504059
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Studentship
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Continuing Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
  • 批准号:
    2409327
  • 财政年份:
    2024
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Fellowship Award
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Continuing Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 25.67万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了