Advanced Gas Turbine cycles for high efficiency and sustainable future conventional generation

先进的燃气轮机循环可实现高效率和可持续的未来传统发电

基本信息

  • 批准号:
    EP/M015300/1
  • 负责人:
  • 金额:
    $ 123.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Gas Turbines (GTs) will figure prominently in complimenting the intermittent power generated by renewables, while varied fuel sources by 2050 are likely to include biofuels (the former a mixture of methane, carbon mono- and di-oxide and nitrogen - essentially low calorific value fuel) and perhaps shale gas and hydrogen. In meeting CO2 emissions targets, there will be a premium on designs that (i) have the highest fuel conversion efficiency and (ii) integrate with carbon capture and storage. Such designs include either humid air turbines (HAT) or schemes with extensive exhaust, or flue, gas recirculation together with the use of oxygen-enriched air. There is extensive techno-economic evaluation of these designs with no preferred 'winner' and it is likely that each will find extensive application. Thus, there will be a need to design combustion chambers to burn low calorific gases, with "oxidant" streams including up to 30% (w/w) of steam, pure oxygen or oxygen heavily diluted with Carbon dioxide. Such changes present formidable difficulties to flame stability and extinction. The design of low NOx combustion chambers has shown the value of computational fluid dynamics (CFD) in developing commercially viable designs and this trend will strengthen. Finally, the value of suitable sensors during development has proved its worth. This research identifies the gaps in existing physical understanding, CFD and optical sensors, to be addressed by "fundamental research", that need to be filled so that step change GT technologies can be developed by industry. This proposal will develop tools and understanding as follows:(i) On-line, near real time optical sensor to measure the 'Wobbe' index of fuel entering the gas turbine, since fast knowledge of the calorific value of highly variable bio- fuels is important for control of future GTs.(ii) Flame stability and extinction is associated with the existence of a critical 'rate of stretch' and the largest laminar flame speed that the flame can experience due to the aerodynamic flow field of the combustors. Designers, using CFD for flow prediction in combustion chambers, need to know these critical values for the range of fuels and oxidants, which will be in use up to 2050. Thus, this proposal will obtain measurements of these values in premixed and non-premixed flames as a function of preheat and pressure and analyse the process of flame extinction in laboratory and pilot scale model combustors using, amongst other instruments, detection of CO and formaldehyde by planar laser induced fluorescence.(iii) Low NOx emissions require the fuel to be well premixed and it is useful for development engineers to have access to an instrument, which can measure local fuel/air ratio on test stands. Building on previous successful development of an instrument based on natural chemiluminescent emissions from a flame, there will be an evaluation of its calibration as a function of pressure and humidity, the latter in the context of a HAT gas turbine design.(iv) Thermoacoustic instability is a destructive high intensity 'limit cycle', which is either avoided operationally or designs are improved largely by cut and try methods. Until recently, the transition to this limit cycle and the limit cycle itself were characterised by frequency and phase spectral analysis. Our recent work has shown that non-linear time series analysis reveals that transition to high amplitude oscillations retains a structure as determined by chaos theory. We will use this form of analysis to identify the fluid mechanical structures responsible for this behaviour, with the aim of devising methods to at least warn gas turbine operators of impending thermoacoustic instability.(v) The best available LES CFD methods will be evaluated using the measurements in the counterflow and model combustor geometries. There will also be direct assessment, through the measurements, of the 'sub-grid' contribution of LES methodology to calculations
燃气轮机(GT)将在补充可再生能源产生的间歇性电力方面发挥重要作用,而到2050年,各种燃料来源可能包括生物燃料(前者是甲烷,碳一氧化物和二氧化物以及氮的混合物-基本上是低热值燃料),也许还有页岩气和氢气。在实现二氧化碳排放目标方面,将对(i)具有最高燃料转化效率和(ii)与碳捕获和储存相结合的设计给予奖励。这种设计包括湿空气涡轮机(HAT)或具有大量废气或烟道气再循环以及使用富氧空气的方案。对这些设计进行了广泛的技术经济评价,没有首选的“赢家”,很可能每一种设计都将得到广泛的应用。因此,将需要设计燃烧室以燃烧低热气体,其中“氧化剂”流包括高达30%(w/w)的蒸汽、纯氧或用二氧化碳严重稀释的氧气。这种变化给火焰的稳定和熄灭带来了巨大的困难。低NOx燃烧室的设计已经显示出计算流体动力学(CFD)在开发商业上可行的设计中的价值,并且这一趋势将得到加强。最后,合适的传感器在开发过程中的价值已经证明了它的价值。这项研究确定了现有的物理理解,CFD和光学传感器的差距,需要通过“基础研究”来解决,这些差距需要填补,以便行业可以开发阶跃变化GT技术。(i)在线的、接近真实的时间的光学传感器,用于测量进入燃气涡轮机的燃料的“沃泊”指数,因为快速了解高度可变的生物燃料的热值对于控制未来的GT是重要的。(ii)火焰稳定性和熄灭与存在临界“拉伸率”和火焰由于燃烧室的空气动力学流场而可能经历的最大层流火焰速度有关。设计人员使用计算流体力学预测燃烧室中的流动,需要知道这些临界值的范围内的燃料和氧化剂,这将在使用到2050年。因此,该提案将获得这些值的测量值在预混和非预混火焰作为预热和压力的函数,并分析在实验室和试验规模的模型燃烧室中使用,除其他仪器,检测CO和甲醛平面激光诱导荧光的火焰熄灭的过程。(iii)低NOx排放要求燃料充分预混合,并且开发工程师可以使用可以在试验台上测量局部燃料/空气比的仪器。在以前成功开发的基于火焰自然发光发射的仪器的基础上,将对其作为压力和湿度函数的校准进行评估,后者在HAT燃气涡轮机设计的背景下进行。(iv)热声不稳定性是一种破坏性的高强度“极限环”,它要么在操作上避免,要么在很大程度上通过尝试和尝试的方法改进设计。直到最近,过渡到这个极限环和极限环本身的特点是频率和相位谱分析。我们最近的工作表明,非线性时间序列分析表明,过渡到高振幅振荡保留了混沌理论所确定的结构。我们将使用这种形式的分析,以确定负责这种行为的流体机械结构,目的是设计方法,至少警告即将发生的热声不稳定的气体涡轮机运营商。(v)最好的大涡模拟计算流体动力学方法将使用逆流和模型燃烧室几何形状的测量值进行评估。通过测量,还将直接评估LES方法对计算的“子网格”贡献

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Inert Fuel Diluents on Thermoacoustic Instabilities in Gas Turbine Combustion
  • DOI:
    10.2514/1.j058312
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    E. Karlis;Y. Hardalupas;A. M. Taylor
  • 通讯作者:
    E. Karlis;Y. Hardalupas;A. M. Taylor
Mixing and scalar dissipation rate in a decaying jet
衰减射流中的混合和标量耗散率
Effects of inert fuel diluents on the dynamic state of a thermoacoustically unstable gas turbine combustor
惰性燃料稀释剂对热声不稳定燃气轮机燃烧室动态的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karlis E.
  • 通讯作者:
    Karlis E.
Thermoacoustic phenomena in an industrial gas turbine combustor at two different mean pressures
工业燃气轮机燃烧室在两种不同平均压力下的热声现象
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karlis E.
  • 通讯作者:
    Karlis E.
Experimental characterization of intermittency of thermoacoustic instability in a swirl stabilized combustor
旋流稳定燃烧室热声不稳定性间歇性的实验表征
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karlis E.
  • 通讯作者:
    Karlis E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yannis Hardalupas其他文献

Evaluation of an event-based camera for time-resolved imaging of primary atomization in an air-assist atomizer
  • DOI:
    10.1007/s00348-025-04009-w
  • 发表时间:
    2025-04-03
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Kuppuraj Rajamanickam;Yannis Hardalupas
  • 通讯作者:
    Yannis Hardalupas
Spectral analysis of preferential concentration in turbulent flows: parametric dependence on Reynolds, stokes, and froude numbers
湍流中优先聚集的频谱分析:对雷诺数、斯托克斯数和弗劳德数的参数依赖性
  • DOI:
    10.1016/j.ijmultiphaseflow.2025.105222
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    George H. Downing;Yannis Hardalupas
  • 通讯作者:
    Yannis Hardalupas
Extinction strain rate suppression of the precessing vortex core in a swirl stabilised combustor and consequences for thermoacoustic oscillations
  • DOI:
    10.1016/j.combustflame.2019.09.031
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Efstathios Karlis;Yushuai Liu;Yannis Hardalupas;Alexander M.K.P. Taylor
  • 通讯作者:
    Alexander M.K.P. Taylor
An efficient dimensionality reduction approach for modelling cryogenic hydrogen release
  • DOI:
    10.1016/j.ijhydene.2024.10.182
  • 发表时间:
    2024-11-19
  • 期刊:
  • 影响因子:
  • 作者:
    Javad Mohammadpour;Sina Hasibi-Taheri;Jiaxin Zhang;Qingxin Ba;Xuefang Li;Yannis Hardalupas;Fatemeh Salehi
  • 通讯作者:
    Fatemeh Salehi
A detailed CO<sub>2</sub>(<sup>1</sup>B<sub>2</sub>) chemiluminescence chemical kinetics model for carbon monoxide and hydrocarbon oxidation
  • DOI:
    10.1016/j.fuel.2022.124363
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yushuai Liu;Yannis Hardalupas;Alexander M.K.P. Taylor
  • 通讯作者:
    Alexander M.K.P. Taylor

Yannis Hardalupas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yannis Hardalupas', 18)}}的其他基金

Three-Dimensional Temporal Evolution of Primary Liquid Breakup in SPRAYs
喷雾中初级液体分解的三维时间演化
  • 批准号:
    EP/X026248/1
  • 财政年份:
    2022
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Fellowship
De-risking dentistry: Quantifying aerosols associated with routine dentistry to inform mitigation technology and operating practices
降低牙科风险:量化与常规牙科相关的气溶胶,为缓解技术和操作实践提供信息
  • 批准号:
    EP/V038141/1
  • 财政年份:
    2020
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Research Grant
UK Fluids Network
英国流体网络
  • 批准号:
    EP/N032934/1
  • 财政年份:
    2016
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Research Grant
Droplet collisions and interaction with turbulent flows for powder manufacturing
粉末制造中的液滴碰撞和与湍流的相互作用
  • 批准号:
    EP/K019732/1
  • 财政年份:
    2013
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Research Grant
How does primary liquid break-up determine the downstream spray characteristics of airblast atomisers?
初级液体破碎如何决定鼓风雾化器的下游喷雾特性?
  • 批准号:
    EP/G01597X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Research Grant
Droplet clouds in a box of turbulence
湍流箱中的水滴云
  • 批准号:
    EP/E029515/1
  • 财政年份:
    2007
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Research Grant

相似国自然基金

LncRNA GAS5竞争性结合外泌体miR-21-5p靶向TNFAIP3调控巨噬细胞极化促进肩袖腱骨界面修复作用的机制研究
  • 批准号:
    2025JJ80589
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内源性SO2通过抑制DNMT1甲基化LncRNA GAS5拮抗硫酸吲哚酚诱发的心肌细胞焦亡及心肌纤维化
  • 批准号:
    2025JJ50606
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
骨肉瘤干细胞通过分泌GAS6诱导肌成纤 维细胞促进免疫逃逸的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
LncRNA GAS5竞争性结合miR-21/PTEN轴靶向乳酸脱氢酶调控子宫内膜异位症糖酵解
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
lncRNA Gas5调控M1巨噬细胞极化在糖尿病肾病肾纤维化中的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Gas6/Axl信号轴调控铁死亡探索bFGF@adExos/GelMA复合水凝胶促脊髓损伤修复的研究
  • 批准号:
    MS25H090029
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
LncRNA GAS5调控RUNX3/CD80/CD28轴促进甲状腺癌免疫激活的分子机制研究
  • 批准号:
    2025JJ70535
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于TAZ/miR-942-3P/GAS1通路探讨补肾活血方介导子宫内膜上皮细胞糖代谢重编程对宫腔粘连的作用机制研究
  • 批准号:
    2025JJ80912
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ESM1抑制GAS5影响PTEN/PI3K/Akt信号通路促进卵巢癌细胞顺铂耐药
  • 批准号:
    2025JJ50543
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Modular Gas Turbine - Aerodynamic and Thermodynamic design of Heat Management Systems (Accelerating Net Zero using Advanced Fluids).
模块化燃气轮机 - 热管理系统的空气动力学和热力学设计(使用先进流体加速净零排放)。
  • 批准号:
    2737764
  • 财政年份:
    2022
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Studentship
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
  • 批准号:
    RGPIN-2015-05862
  • 财政年份:
    2022
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
  • 批准号:
    RGPIN-2015-05862
  • 财政年份:
    2021
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical investigation of the behaviour of confined, impinging jets with assessment of advanced concepts to reduce unsteady pressure fluctuations in gas turbine testing facilities
对受限冲击射流行为进行数值研究,评估先进概念,以减少燃气轮机测试设施中的不稳定压力波动
  • 批准号:
    520185-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Collaborative Research and Development Grants
Numerical investigation of the behaviour of confined, impinging jets with assessment of advanced concepts to reduce unsteady pressure fluctuations in gas turbine testing facilities
对受限冲击射流行为进行数值研究,评估先进概念,以减少燃气轮机测试设施中的不稳定压力波动
  • 批准号:
    520185-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Collaborative Research and Development Grants
Numerical investigation of the behaviour of confined, impinging jets with assessment of advanced concepts to reduce unsteady pressure fluctuations in gas turbine testing facilities
对受限冲击射流行为进行数值研究,评估先进概念,以减少燃气轮机测试设施中的不稳定压力波动
  • 批准号:
    520185-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
  • 批准号:
    RGPIN-2015-05862
  • 财政年份:
    2018
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
  • 批准号:
    RGPIN-2015-05862
  • 财政年份:
    2016
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Discovery Grants Program - Individual
Development of an advanced gas turbine engine diagnostics, prognostics, and health management system
开发先进的燃气涡轮发动机诊断、预测和健康管理系统
  • 批准号:
    445015-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced Thermal Barrier Coating Systems for Gas Turbine Application: Microstructure, Properties, and Performance
适用于燃气轮机应用的先进热障涂层系统:微观结构、特性和性能
  • 批准号:
    RGPIN-2015-05862
  • 财政年份:
    2015
  • 资助金额:
    $ 123.85万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了