Adaptive Automated Scientific Laboratory
自适应自动化科学实验室
基本信息
- 批准号:EP/M015661/2
- 负责人:
- 金额:$ 6.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our proposal integrates the scientific method with 21st century automation technology, with the goal of making scientific discovery more efficient (cheaper, faster, better). A "Robot Scientist" is a physically implemented laboratory automation system that exploits techniques from the field of artificial intelligence to execute cycles of scientific experimentation. Our vision is that within 10 years many scientific discoveries will be made by teams of human and robot scientists, and that such collaborations between human and robot scientists will produce scientific knowledge more efficiently than either could alone. In this way the productivity of science will be increased, leading to societal benefits: better food security, better medicines, etc. The Physics Nobel Laureate Frank Wilczek has predicted that the best scientist in one hundred years time will be a machine. The proposed project aims to take that prediction several steps closer.We will develop the AdaLab (an Adaptive Automated Scientific Laboratory) framework for semi-automated and automated knowledge discovery by teams of human and robot scientists. This framework will integrate and advance a number of ICT methodologies: knowledge representation, ontology engineering, semantic technologies, machine learning, bioinformatics, and automated experimentation (robot scientists). We will evaluate the AdaLab framework on an important real-world application in cell biology with biomedical relevance to cancer and ageing. The core of AdaLab will be generic.The expected project outputs include:- An AdaLab demonstrated to be greater than 20% more efficient at discovering scientific knowledge (within a limited scientific domain) than human scientists alone.- A novel ontology for modelling uncertain knowledge that supports all aspects of the proposed AdaLab framework.- The first ever communication mechanism between human and robot scientists that standardises modes of communication, information exchange protocols, and the content of typical messages. - New machine learning methods for the generation and efficient testing of complex scientific hypotheses that are twice as efficient at selecting experiments as the best current methods.- A significant advance in the state-of-the-art in automating scientific discovery that demonstrates its scalability to problems an order of magnitude more complex than currently possible.- Novel biomedical knowledge about cell biology relevant to cancer and ageing. - A strengthened interdisciplinary research community that crosses the boundaries between multiple ICT disciplines, laboratory automation, and biology.All outputs produced by the project will be made publicly available by the end of the project.
我们的建议将科学方法与21世纪的自动化技术相结合,目标是使科学发现更有效率(更便宜、更快、更好)。“机器人科学家”是一种物理实现的实验室自动化系统,它利用人工智能领域的技术来执行科学实验的周期。我们的愿景是,在10年内,许多科学发现将由人类和机器人科学家组成的团队完成,人类和机器人科学家之间的这种合作将比任何一方单独创造科学知识的效率更高。通过这种方式,科学的生产力将被提高,从而产生社会效益:更好的食品安全,更好的药物等等。诺贝尔物理学奖获得者弗兰克·威尔切克预测,一百年后最好的科学家将是机器。我们将开发AdaLab(一个自适应自动化科学实验室)框架,用于人类和机器人科学家团队的半自动和自动化知识发现。这一框架将整合和推进若干信通技术方法:知识表示、本体工程、语义技术、机器学习、生物信息学和自动化实验(机器人科学家)。我们将评估AdaLab框架在细胞生物学中的重要现实应用,与癌症和衰老的生物医学相关性。AdaLab的核心将是通用的。预期的项目产出包括:-AdaLab被证明在发现科学知识(在有限的科学领域内)方面比单独使用人类科学家的效率高20%以上。-一种用于对不确定知识进行建模的新型本体,支持建议的AdaLab框架的所有方面。-人类和机器人科学家之间的第一种通信机制,使通信模式、信息交换协议和典型消息的内容标准化。-新的机器学习方法,用于产生和有效测试复杂的科学假设,这些方法在选择实验方面的效率是目前最好的方法的两倍。-在自动化科学发现方面的一项重大进步,表明其对比目前可能的问题更复杂的问题的可扩展性。-关于与癌症和衰老有关的细胞生物学的新生物医学知识。-加强跨学科研究社区,跨越多个信息和通信技术学科、实验室自动化和生物学之间的界限。项目产生的所有成果将在项目结束时公布。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automating Sciences: Philosophical and Social Dimensions
科学自动化:哲学和社会维度
- DOI:10.1109/mts.2018.2795097
- 发表时间:2018
- 期刊:
- 影响因子:2.2
- 作者:King R
- 通讯作者:King R
Multi-task learning with a natural metric for quantitative structure activity relationship learning.
具有自然度量的多任务学习,用于定量结构活动关系学习。
- DOI:10.1186/s13321-019-0392-1
- 发表时间:2019
- 期刊:
- 影响因子:8.6
- 作者:Sadawi N
- 通讯作者:Sadawi N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Larisa Soldatova其他文献
Guest editors’ introduction to the special issue on Discovery Science
- DOI:
10.1007/s10994-020-05922-3 - 发表时间:
2020-10-20 - 期刊:
- 影响因子:2.900
- 作者:
Larisa Soldatova;Joaquin Vanschoren - 通讯作者:
Joaquin Vanschoren
Establishing predictive machine learning models for drug responses in patient derived cell culture
为源自患者的细胞培养中的药物反应建立预测性机器学习模型
- DOI:
10.1038/s41698-025-00937-2 - 发表时间:
2025-06-13 - 期刊:
- 影响因子:8.000
- 作者:
Abbi Abdel-Rehim;Oghenejokpeme Orhobor;Gareth Griffiths;Larisa Soldatova;Ross D. King - 通讯作者:
Ross D. King
Larisa Soldatova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Larisa Soldatova', 18)}}的其他基金
Adaptive Automated Scientific Laboratory
自适应自动化科学实验室
- 批准号:
EP/M015661/1 - 财政年份:2015
- 资助金额:
$ 6.94万 - 项目类别:
Research Grant
Learning to learn how to design drugs
学习如何设计药物
- 批准号:
EP/K030582/1 - 财政年份:2013
- 资助金额:
$ 6.94万 - 项目类别:
Research Grant
相似海外基金
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
$ 6.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: SSMCDAT2023: Natural Language Processing and Large Language Models for Automated Extraction of Materials Chemistry Data from Scientific Literature
EAGER:SSMCDAT2023:用于从科学文献中自动提取材料化学数据的自然语言处理和大型语言模型
- 批准号:
2334411 - 财政年份:2023
- 资助金额:
$ 6.94万 - 项目类别:
Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
22H03600 - 财政年份:2022
- 资助金额:
$ 6.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
RAPID: Automated discovery of COVID-19 related hypotheses using publicly available scientific literature
RAPID:使用公开的科学文献自动发现 COVID-19 相关假设
- 批准号:
2027864 - 财政年份:2020
- 资助金额:
$ 6.94万 - 项目类别:
Standard Grant
RAPID: Automated discovery of COVID-19 related hypotheses using publicly available scientific literature
RAPID:使用公开的科学文献自动发现 COVID-19 相关假设
- 批准号:
2127776 - 财政年份:2020
- 资助金额:
$ 6.94万 - 项目类别:
Standard Grant
CORE SUPPORT ACTIVITIES: SCIENTIFIC AND TECHNICAL SERVICES FOR THE AUTOMATED SELF-ADMINISTERED 24-HOUR (ASA24) DIETARY ASSESSMENT SYSTEM
核心支持活动:24 小时自动自我管理 (ASA24) 饮食评估系统的科技服务
- 批准号:
10378451 - 财政年份:2019
- 资助金额:
$ 6.94万 - 项目类别:
CORE SUPPORT ACTIVITIES: SCIENTIFIC AND TECHNICAL SERVICES FOR THE AUTOMATED SELF-ADMINISTERED 24-HOUR (ASA24) DIETARY ASSESSMENT SYSTEM
核心支持活动:24 小时自动自我管理 (ASA24) 饮食评估系统的科技服务
- 批准号:
10806913 - 财政年份:2019
- 资助金额:
$ 6.94万 - 项目类别:
CORE SUPPORT ACTIVITIES: SCIENTIFIC AND TECHNICAL SERVICES FOR THE AUTOMATED SELF-ADMINISTERED 24-HOUR (ASA24) DIETARY ASSESSMENT SYSTEM
核心支持活动:24 小时自动自我管理 (ASA24) 饮食评估系统的科技服务
- 批准号:
10593035 - 财政年份:2019
- 资助金额:
$ 6.94万 - 项目类别:
CORE SUPPORT ACTIVITIES: SCIENTIFIC AND TECHNICAL SERVICES FOR THE AUTOMATED SELF-ADMINISTERED 24-HOUR (ASA24) DIETARY ASSESSMENT SYSTEM
核心支持活动:24 小时自动自我管理 (ASA24) 饮食评估系统的科技服务
- 批准号:
10045634 - 财政年份:2019
- 资助金额:
$ 6.94万 - 项目类别:
Artificial and Augmented Intelligence for Automated Scientific Discovery
用于自动化科学发现的人工智能和增强智能
- 批准号:
EP/S000356/1 - 财政年份:2018
- 资助金额:
$ 6.94万 - 项目类别:
Research Grant














{{item.name}}会员




