Artificial and Augmented Intelligence for Automated Scientific Discovery
用于自动化科学发现的人工智能和增强智能
基本信息
- 批准号:EP/S000356/1
- 负责人:
- 金额:$ 129.24万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AI is a widely used term that conjurers up many of the computers from science fiction. Its stands for a whole collection of ideas, algorithms, computational models and knowledge systems. Recent success of particular types of machine learning (e.g. deep neutral nets) have again excited the interest of the scientific community in delivering insight into the complexity of the real world. This type of approach compliments the knowledge engineering systems that have previously been used, however they require massive amounts of data to be trained. Taking the chemical and materials sciences as exemplar areas we can see that the traditional approaches to scientific discovery work with relatively small amounts of often uncertain data which is distilled by human insight to yield predictions and testable theories which may evolve as new data becomes available. In these areas of science more data is becoming available and the impact of 'larger data' parallels the reality that almost all science now depends on computational assistance. Never-the-less the quantity of quality data needed to train the new AI systems is simply not directly available even with recent advances in automation. As a basis for the network we propose to use 'amplification by simulation' as a key element of the cycle of automated experiments, simulation, AI learning, prediction, comparison, design, further experiments, to create the environment in which leading AI developments can be applied to the chemical and materials discovery.
人工智能是一个广泛使用的术语,它使许多科幻小说中的计算机变戏法。它代表了思想、算法、计算模型和知识系统的整体集合。最近,特定类型的机器学习(例如深度中性网络)的成功再次激发了科学界对洞察真实的世界复杂性的兴趣。这种方法补充了以前使用的知识工程系统,但它们需要大量的数据进行训练。以化学和材料科学为例,我们可以看到,传统的科学发现方法只处理相对少量的、通常不确定的数据,这些数据是通过人类的洞察力提炼出来的,可以产生预测和可检验的理论,这些理论可能会随着新数据的出现而发展。在这些科学领域,越来越多的数据变得可用,“更大数据”的影响与几乎所有科学现在都依赖于计算辅助的现实平行。尽管如此,即使在自动化方面取得了最新进展,训练新人工智能系统所需的高质量数据量也无法直接获得。作为网络的基础,我们建议使用“模拟放大”作为自动化实验,模拟,人工智能学习,预测,比较,设计,进一步实验循环的关键要素,以创建领先的人工智能发展可以应用于化学和材料发现的环境。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Group 8: Challenge: Event detection in nanopore data
第 8 组:挑战:纳米孔数据中的事件检测
- DOI:10.5258/soton/ai3sd0249
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Adewole W
- 通讯作者:Adewole W
Group 5: Challenge: Task 2 - Event Detection in Nanopore Data
第 5 组:挑战:任务 2 - 纳米孔数据中的事件检测
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bachs Herra, A
- 通讯作者:Bachs Herra, A
Group 14: Challenge: Task 3 - Defect Detection in Graphene Sheets
第 14 组:挑战:任务 3 - 石墨烯片中的缺陷检测
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bao P
- 通讯作者:Bao P
AI3SD Project: Artificial intelligence for reconstruction and super-resolution of chemical tomography
AI3SD项目:用于化学断层扫描重建和超分辨率的人工智能
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Butler KT
- 通讯作者:Butler KT
AI3SD Intern Project: A deep neural network for structural relaxation of metal-organic interfaces
AI3SD 实习生项目:用于金属有机界面结构松弛的深度神经网络
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Barret R
- 通讯作者:Barret R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Frey其他文献
Prostaglandin PGE2 receptor EP4 signaling in the brain regulates glucose homeostasis
- DOI:
10.1016/j.bbi.2024.01.101 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:
- 作者:
Anzela Niraula;Olivia Santiago;Jeremy Frey;Kelly Ness;Mauricio Dorfman;Joshua Thaler - 通讯作者:
Joshua Thaler
Correction to: A new topological descriptor for water network structure
- DOI:
10.1186/s13321-019-0377-0 - 发表时间:
2019-08-07 - 期刊:
- 影响因子:5.700
- 作者:
Lee Steinberg;John Russo;Jeremy Frey - 通讯作者:
Jeremy Frey
Small HDL, diabetes, and proinflammatory effects in macrophages
小 HDL、糖尿病和巨噬细胞的促炎作用
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
V. Kothari;Yi He;Farah Kramer;Shelley Barnhart;Jenny E. Kanter;Jingjing Tang;Jeremy Frey;T. Vaisar;J. Heinecke;K. Bornfeldt - 通讯作者:
K. Bornfeldt
Stop squandering data: make units of measurement machine-readable
停止浪费数据:使测量单位易于机器读取
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:64.8
- 作者:
R. Hanisch;Stuart Chalk;Romain Coulon;S. Cox;Steven Emmerson;Francisco Javier Flamenco Sandoval;Alistair Forbes;Jeremy Frey;Blair Hall;R. Hartshorn;P. Heus;S. Hodson;Kazumoto Hosaka;D. Hutzschenreuter;C. Kang;Susanne Picard;Ryan R White - 通讯作者:
Ryan R White
Characterisation of engineered defects in extreme ultraviolet mirror substrates using lab-scale extreme ultraviolet reflection ptychography.
使用实验室规模的极紫外反射叠层成像技术表征极紫外镜基底中的工程缺陷。
- DOI:
10.1016/j.ultramic.2023.113720 - 发表时间:
2023 - 期刊:
- 影响因子:2.2
- 作者:
Haoyan Lu;M. Odstrčil;Charles Pooley;J. Biller;Mikheil Mebonia;G. He;M. Praeger;L. Juschkin;Jeremy Frey;W. Brocklesby - 通讯作者:
W. Brocklesby
Jeremy Frey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Frey', 18)}}的其他基金
Instrument Development: A lab-scale soft X-ray microscope for biological systems
仪器开发:用于生物系统的实验室规模软 X 射线显微镜
- 批准号:
EP/Z53108X/1 - 财政年份:2024
- 资助金额:
$ 129.24万 - 项目类别:
Research Grant
Plant selection and breeding for Net Zero
净零植物选择和育种
- 批准号:
EP/Y005694/1 - 财政年份:2023
- 资助金额:
$ 129.24万 - 项目类别:
Research Grant
Digital Economy IT as a Utility Network+
数字经济 IT 作为公用事业网络
- 批准号:
EP/K003569/1 - 财政年份:2012
- 资助金额:
$ 129.24万 - 项目类别:
Research Grant
相似海外基金
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 129.24万 - 项目类别:
Standard Grant
STTR Phase I: Enabling Student Project Collaboration with Artificial Intelligence Augmented Mentorship
STTR 第一阶段:通过人工智能增强指导实现学生项目协作
- 批准号:
2243452 - 财政年份:2023
- 资助金额:
$ 129.24万 - 项目类别:
Standard Grant
Human Tutoring Augmented by Artificial Intelligence (AI): A Tutoring Analytics and Performance Support Model to Improve the Work and Professional Growth of Future Tutors
人工智能 (AI) 增强的人工辅导:一种辅导分析和绩效支持模型,可改善未来辅导员的工作和专业成长
- 批准号:
2222647 - 财政年份:2022
- 资助金额:
$ 129.24万 - 项目类别:
Standard Grant
Facial Reconstructive Procedures through Artificial Intelligence and Augmented Reality
通过人工智能和增强现实进行面部重建手术
- 批准号:
559012-2021 - 财政年份:2022
- 资助金额:
$ 129.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of an educational system for dementia care communication techniques using artificial intelligence and augmented reality.
使用人工智能和增强现实开发痴呆症护理沟通技术教育系统。
- 批准号:
22H03435 - 财政年份:2022
- 资助金额:
$ 129.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Using Augmented Reality and Artificial Intelligence to Improve Teaching and Learning Spatial Transformations in STEM Disciplines
利用增强现实和人工智能改善 STEM 学科的教学空间转换
- 批准号:
2119549 - 财政年份:2021
- 资助金额:
$ 129.24万 - 项目类别:
Standard Grant
CAREER: Learning to learn - Artificial Intelligence Augmented Chemistry for Molecular Simulations and Beyond
职业:学会学习 - 分子模拟及其他领域的人工智能增强化学
- 批准号:
2044165 - 财政年份:2021
- 资助金额:
$ 129.24万 - 项目类别:
Continuing Grant
From atoms to mechanisms - Artificial Intelligence augmented molecular simulations for mechanistic ligand design
从原子到机制 - 人工智能增强机械配体设计的分子模拟
- 批准号:
10275014 - 财政年份:2021
- 资助金额:
$ 129.24万 - 项目类别:
From atoms to mechanisms - Artificial Intelligence augmented molecular simulations for mechanistic ligand design
从原子到机制 - 人工智能增强机械配体设计的分子模拟
- 批准号:
10683387 - 财政年份:2021
- 资助金额:
$ 129.24万 - 项目类别:
From atoms to mechanisms - Artificial Intelligence augmented molecular simulations for mechanistic ligand design
从原子到机制 - 人工智能增强机械配体设计的分子模拟
- 批准号:
10490317 - 财政年份:2021
- 资助金额:
$ 129.24万 - 项目类别: