From Processing to Simulated In-Reactor Performance of Zr Cladding.

从锆熔壳的加工到模拟反应堆内性能。

基本信息

  • 批准号:
    EP/M018369/1
  • 负责人:
  • 金额:
    $ 62.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Nuclear energy will play a critical role in the future of secure, affordable and low-carbon power generation. The UK is committed to a greenhouse emissions target of 80% of pre-1990 levels by 2050 and as part of this, between now and then, it is likely that the percentage of power generation via nuclear will have to increase by somewhere between two- and three-times.The vast majority of nuclear power is generated by light water nuclear reactors. These use cladding made from various types of zirconium alloy to contain ('clad') nuclear fuel, creating a barrier between highly active fuel/fission products and the coolant. Zirconium is considered an ideal material for this purpose, as it has excellent corrosion resistance properties and a small neutron cross section, meaning that it has a low rate of neutron absorption. These properties make zirconium alloys fundamentally more suitable than many other materials in reactor conditions.There is still much more to be learnt about the behaviour and durability of zirconium alloys, in order to enhance their performance and the efficiency of nuclear power generation. If we gain further understanding about how these materials behave in a nuclear reactor, we can more accurately predict the 'life' of the clad and even develop new, more sophisticated alloys - advancements which can minimise new nuclear waste production and further enhance fuel and reactor safety.Zirconium alloy research is therefore at the heart of nuclear power generation and safety. Within this context, this project aims to develop increased understanding in the field of zirconium processing and its relationship to in-reactor performance. The UK-India Civil Nuclear Collaboration is an on-going initiative to promote cooperative research in the area of nuclear energy, and this Phase III project builds upon a highly successful project undertaken in Phase I. The previous collaboration, between the University of Manchester and the Bhabha Atomic Research Centre (BARC) in India, made significant developments in the understanding of zirconium alloys, through both experimental and modelling work. This work has already had direct relevance to, and application by, the nuclear industry.This project aims to directly follow-on from this work, adopting a 'cradle-to-grave' approach intended to gain further understanding about the in-reactor performance of zirconium, including how the initial 'processing' of the material might impact on its properties. The proposed work will again be carried-out with partners at BARC, as well as at the Indira Gandhi Centre for Atomic Research (IGCAR).Once new hypotheses about zirconium are developed, including potential new alloy compositions, these must be thoroughly tested in reactor conditions before real-world application. This is a costly and time-consuming process, with few test reactors available to researchers and the costs/experimental difficulties associated with working on radioactive material. Partly in response to this, nearly £30m has been invested into the development of the University of Manchester's Dalton Cumbrian Facility (DCF), designed to allow research on irradiated and activated materials.DCF will enable the other key aspect of this project: the development of novel experimental set-ups (pioneered at the University of Michigan) at both DCF and IGCAR. These experiments will allow the investigation of material degradation during irradiation, mimicking the conditions experienced in reactors without producing radioactive samples, and so drive forward accurate, practical understanding of zirconium performance, enhancing efficient, safe nuclear power generation.This project brings together outstanding capabilities and expertise from the UK (Manchester and Sheffield) and India (BARC and IGCAR), enabling a unique research programme that will have impact for the nuclear industry and research, as well as helping to develop new experimental techniques for the field.
核能将在未来安全、负担得起和低碳发电中发挥关键作用。英国承诺到2050年将温室气体排放量控制在1990年前水平的80%,作为这一目标的一部分,从现在到那时,通过核能发电的比例可能必须增加两到三倍。绝大多数核能来自轻水核反应堆。这些反应堆使用由各种类型的锆合金制成的包层来包含核燃料,在高度活跃的燃料/裂变产物和冷却剂之间建立了一道屏障。锆被认为是用于这一目的的理想材料,因为它具有优异的耐腐蚀性和较小的中子横截面,这意味着它具有较低的中子吸收率。这些特性使锆合金从根本上比许多其他材料更适合反应堆条件。为了提高它们的性能和核能发电的效率,对锆合金的行为和耐久性仍有更多的了解。如果我们对这些材料在核反应堆中的行为有进一步的了解,我们就可以更准确地预测包壳的‘寿命’,甚至可以开发出新的、更复杂的合金--这些进步可以最大限度地减少新的核废料产生,并进一步提高燃料和反应堆的安全性。因此,对锆合金的研究是核能发电和安全的核心。在此背景下,该项目旨在加深对锆矿加工及其与反应堆内性能之间的关系的了解。英国-印度民用核合作是一项正在进行的举措,旨在促进核能领域的合作研究,这一第三阶段项目建立在第一阶段开展的一个非常成功的项目的基础上。曼彻斯特大学和印度巴巴原子研究中心(BARC)之间先前的合作通过实验和模型工作在对锆合金的认识方面取得了重大进展。这项工作已经与核工业直接相关,并得到了核工业的应用。该项目旨在直接从这项工作继续下去,采用“从摇篮到坟墓”的方法,旨在进一步了解锆堆内的性能,包括材料的初始“加工”可能如何影响其性能。这项拟议的工作将再次与BARC的合作伙伴以及英迪拉·甘地原子研究中心(IGCAR)合作进行。一旦开发出关于锆的新假设,包括潜在的新合金成分,这些假设必须在反应堆条件下进行彻底测试,然后才能在现实世界中应用。这是一个昂贵和耗时的过程,研究人员几乎没有可用的测试反应堆,而且与放射性材料的工作相关的成本/实验困难。作为对此的部分回应,曼彻斯特大学的道尔顿坎布里安实验室(DCF)投入了近3000万GB的资金,该设施旨在对辐照和活化材料进行研究。DCF将支持该项目的另一个关键方面:在DCF和IGCAR开发新型实验装置(由密歇根大学首创)。该项目汇集了英国(曼彻斯特和谢菲尔德)和印度(BARC和IGCAR)的杰出能力和专业知识,使一个独特的研究计划能够对核工业和研究产生影响,并帮助开发该领域的新实验技术。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of cold work on the transformation kinetics and texture of a zirconium alloy during fast thermal cycling
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Preuss其他文献

Tracking the onset of plasticity in a Ni-base superalloy using in-situ High-Resolution Digital Image Correlation
使用原位高分辨率数字图像相关技术跟踪镍基高温合金中塑性的开始
  • DOI:
    10.1016/j.matchar.2024.114654
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Dongchen Hu;Albert D. Smith;David Lunt;Rhys Thomas;Michael D. Atkinson;Xiaodong Liu;Ömer Koç;Jack M. Donoghue;Zhenbo Zhang;João Quinta da Fonseca;Michael Preuss
  • 通讯作者:
    Michael Preuss
17. BRIDGEPRS: A POWERFUL MULTI-ANCESTRY POLYGENIC RISK SCORE METHOD
  • DOI:
    10.1016/j.euroneuro.2022.07.108
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paul O'Reilly;Clive Hoggart;Shing Wan Choi;Michael Preuss
  • 通讯作者:
    Michael Preuss
Evolution of Zr(Fe,Cr)<sub>2</sub> second phase particles in Zircaloy-2 under heavy ion irradiation
  • DOI:
    10.1016/j.jnucmat.2024.155081
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kieran Lynch;Ömer Koç;Graeme Greaves;Alexander Carruthers;Mia Maric;Michael Preuss;Aidan Cole-Baker;Philipp Frankel;Joseph Robson
  • 通讯作者:
    Joseph Robson
Identification, classification and characterisation of hydrides in Zr alloys
Zr合金中氢化物的识别、分类和表征
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Mia Maric;R. Thomas;Alec Davis;D. Lunt;Jack Donoghue;Ali Gholinia;Marc De Graef;T. Ungár;Pierre Barberis;F. Bourlier;P. Frankel;P. Shanthraj;Michael Preuss
  • 通讯作者:
    Michael Preuss
Architecting new materials with strength-ductility synergy through interphase engineering
通过界面工程构建具有强韧性协同作用的新材料
  • DOI:
    10.1016/j.jmst.2025.02.092
  • 发表时间:
    2026-01-01
  • 期刊:
  • 影响因子:
    14.300
  • 作者:
    Zhenbo Zhang;Emmanouil Stavroulakis;David Stewart;Michael Preuss
  • 通讯作者:
    Michael Preuss

Michael Preuss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Preuss', 18)}}的其他基金

MIDAS - Mechanistic understanding of Irradiation Damage in fuel Assemblies
MIDAS - 燃料组件中辐照损伤的机理理解
  • 批准号:
    EP/S01702X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Silicide-Strengthened Steel - A New Method of Wear Protection within Nuclear Environments
硅化物强化钢——核环境中磨损防护的新方法
  • 批准号:
    EP/R000956/1
  • 财政年份:
    2017
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation
高剂量中子辐照的高保真离子束模拟
  • 批准号:
    EP/L025981/1
  • 财政年份:
    2014
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Dislocation-Microstructure Interaction at a Crack Tip - In Search of a Driving Force for Short Crack Growth
裂纹尖端的位错-微观结构相互作用 - 寻找短裂纹扩展的驱动力
  • 批准号:
    EP/M000737/1
  • 财政年份:
    2014
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Fuel
工程锆合金包壳改进可提高轻水堆燃料的事故耐受性
  • 批准号:
    EP/K034650/1
  • 财政年份:
    2013
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
New Nuclear Manufacturing (NNUMAN)
新核制造(NNUMAN)
  • 批准号:
    EP/J021172/1
  • 财政年份:
    2012
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Enhancing nuclear fuel efficiency through improved understanding of irradiation damage in zirconium cladding
通过加深对锆包壳辐照损伤的了解来提高核燃料效率
  • 批准号:
    EP/I005420/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Fellowship
Irradiation Effects on Flow Localisation in Zirconium Alloys
辐照对锆合金流动局域化的影响
  • 批准号:
    EP/I012346/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Performance and Reliability of Metallic Materials for Nuclear Fission Power Generation
核裂变发电用金属材料的性能和可靠性
  • 批准号:
    EP/I003290/1
  • 财政年份:
    2010
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Strain mapping of individual grains using diffraction contrast tomography
使用衍射对比断层扫描技术绘制单个晶粒的应变图
  • 批准号:
    EP/F020910/1
  • 财政年份:
    2008
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant

相似海外基金

English Speaking Simulated Patients (ESSPs) and English Scenarios for OSCE Nursing Student Evaluations
用于 OSCE 护理学生评估的英语模拟患者 (ESSP) 和英语场景
  • 批准号:
    24K13695
  • 财政年份:
    2024
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cryptographic data tool to reduce carbon emissions of Electric Vehicles - computer simulated feasibility study
减少电动汽车碳排放的加密数据工具——计算机模拟可行性研究
  • 批准号:
    10114265
  • 财政年份:
    2024
  • 资助金额:
    $ 62.6万
  • 项目类别:
    SME Support
Development of explainable tactical evaluation technology that can be simulated from video in group behaviors
开发可解释的战术评估技术,可以通过视频模拟群体行为
  • 批准号:
    23H03282
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase II: Quantification of Operative Performance via Simulated Surgery, Capacitive Sensing, and Machine Learning to Improve Surgeon Performance & Medical Device Develop
SBIR 第二阶段:通过模拟手术、电容传感和机器学习量化手术表现,以提高外科医生的表现
  • 批准号:
    2223976
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Cooperative Agreement
Reducing stigmatizing attitudes and behaviors of nursing students in simulated clinical visits of patients living with HIV in Iran
在伊朗艾滋病毒感染者的模拟临床就诊中减少护生的污名化态度和行为
  • 批准号:
    10542953
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
SBIR Phase I: Mission Planning Methods and Simulated Crisis Management Framework to teach STEM to Underserved Youth
SBIR 第一阶段:向服务不足的青少年教授 STEM 的任务规划方法和模拟危机管理框架
  • 批准号:
    2302195
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Standard Grant
Fluidity in simulated human-robot interaction with speech interfaces
模拟人机交互与语音界面的流畅性
  • 批准号:
    EP/X009343/1
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
A novel platform for synthetic generation and statistical obfuscation of tabular clinical data, simulated images, and machine-generated text
用于表格临床数据、模拟图像和机器生成文本的合成生成和统计混淆的新颖平台
  • 批准号:
    10696488
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
Sex-Specific Angiogenic Responses of Vascular Cells to Simulated Microgravity
血管细胞对模拟微重力的性别特异性血管生成反应
  • 批准号:
    10606937
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
Simulated Urban Environment for Last Mile Drone Logistics ("SimLogAI")
最后一英里无人机物流的模拟城市环境(“SimLogAI”)
  • 批准号:
    10080134
  • 财政年份:
    2023
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了