Analytic methods for large discrete structures
大型离散结构的分析方法
基本信息
- 批准号:EP/M025365/1
- 负责人:
- 金额:$ 38.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research belongs to discrete mathematics. The project addresses several fundamental questions in the recently emerged and rapidly evolving theory of combinatorial limits. This theory led to a better understanding of important concepts in combinatorics and theoretical computer science, e.g. regularity and property testing, it provided analytic tools that were used to solve many long standing open problems in extremal combinatorics, and it opened new links between analysis, combinatorics, ergodic theory, group theory and probability theory. One of the reasons for the rapid growth of the theory of combinatorial limits comes from computer science where structures such as the graph of internet connections or graphs of social networks (e.g. Facebook, LinkedIn) are of enormous size and the tools from theory of combinatorial limits can be used to approximate these structures by analytic objects.We plan to extend the range of possible applications of the flag algebra method in extremal combinatorics by adopting the method to new settings, in particular those related to Turán densities, and give applications of the method to specific problems from extremal combinatorics. We will also use the flag algebra arguments to gain new insights in the relation between finitely forcible graph limits and optimal solutions of extremal combinatorics problems.The concepts related to the limits of dense and sparse discrete structures were developed to a large extent separately and an attempt to bridge the gap between them was made through the model theory inspired notion of FO convergence. We plan to explore the limits of representing FO convergent sequences by the corresponding analytic objects (modellings). Our intention is also to use the knowledge gained to provide a more robust notion of convergence which would be less sensitive to minor local modifications.
本研究属于离散数学范畴。该项目解决了最近出现的和快速发展的组合极限理论中的几个基本问题。这一理论导致了更好地理解组合学和理论计算机科学中的重要概念,例如正则性和属性测试,它提供了用于解决极值组合学中许多长期存在的开放问题的分析工具,并开辟了分析,组合学,遍历理论,群论和概率论之间的新联系。组合极限理论迅速发展的原因之一来自计算机科学,在计算机科学中,诸如互联网连接图或社交网络图之类的结构(例如Facebook,LinkedIn)是巨大的规模和工具,从理论的组合极限可以用来近似这些结构的分析对象。我们计划扩大范围的可能应用的标志代数方法,极值组合学通过采用新的设置方法,特别是那些有关图兰密度,并给出应用程序的方法,从极值组合学的具体问题。我们还将使用旗代数参数,以获得新的见解之间的关系的非强制图极限和极值组合问题的最佳解决方案。有关的概念,密集和稀疏离散结构的限制在很大程度上分别开发,并试图通过模型理论的启发FO收敛的概念,以弥合它们之间的差距差距。我们计划探索由相应的分析对象(建模)表示FO收敛序列的限制。我们的目的也是利用所获得的知识,以提供一个更强大的概念收敛,这将是不太敏感的微小的局部修改。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weak regularity and finitely forcible graph limits
弱正则性和有限强制图极限
- DOI:10.1090/tran/7066
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Cooper J
- 通讯作者:Cooper J
Finitely forcible graph limits are universal
有限强制图极限是通用的
- DOI:10.1016/j.aim.2018.10.019
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Cooper J
- 通讯作者:Cooper J
First order limits of sparse graphs: Plane trees and path-width
稀疏图的一阶极限:平面树和路径宽度
- DOI:10.1002/rsa.20676
- 发表时间:2017
- 期刊:
- 影响因子:1
- 作者:Gajarský J
- 通讯作者:Gajarský J
Cycles of length three and four in tournaments
锦标赛中长度为三和四的循环
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0.7
- 作者:Chan T F N
- 通讯作者:Chan T F N
Chromatic roots and limits of dense graphs
- DOI:10.1016/j.disc.2016.11.009
- 发表时间:2015-11
- 期刊:
- 影响因子:0
- 作者:P. Csikvári;P. Frenkel;J. Hladký;T. Hubai
- 通讯作者:P. Csikvári;P. Frenkel;J. Hladký;T. Hubai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kral其他文献
Random groups and scaling limit argument
随机组和缩放限制参数
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Daniel Kral;Bojan Mohar;Atsuhiro Nakamoto;Ondrej Pangrac;Yusuke Suzuki;Seiichi Kamada;近藤剛史 - 通讯作者:
近藤剛史
Daniel Kral的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Standard Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Standard Grant
CAREER: Fuzzing Large Software: Principles, Methods, and Tools
职业:模糊大型软件:原理、方法和工具
- 批准号:
2340198 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Standard Grant
Creating harmonised and scalable methods and tools for constructing households in large diverse administrative and health research datasets
创建统一且可扩展的方法和工具,用于在大型多样化的行政和健康研究数据集中构建家庭
- 批准号:
ES/X00046X/1 - 财政年份:2023
- 资助金额:
$ 38.38万 - 项目类别:
Research Grant
Novel In-Cell Instrumentation Methods for Large Format Prismatic Battery Cells project
用于大型棱柱形电池项目的新型内嵌仪器方法
- 批准号:
2883784 - 财政年份:2023
- 资助金额:
$ 38.38万 - 项目类别:
Studentship
Evaluating Policy Solutions Aimed at Improving Hospice Care Access in Rural Areas
评估旨在改善农村地区临终关怀服务的政策解决方案
- 批准号:
10555012 - 财政年份:2023
- 资助金额:
$ 38.38万 - 项目类别:
NIH resubmission Deyu Li - Etheno adductome and repair pathways
NIH 重新提交 Deyu Li - 乙烯加合组和修复途径
- 批准号:
10659931 - 财政年份:2023
- 资助金额:
$ 38.38万 - 项目类别:
A point-of-care salivary cytokine test for early detection of oral cancer
用于早期发现口腔癌的即时唾液细胞因子检测
- 批准号:
10760626 - 财政年份:2023
- 资助金额:
$ 38.38万 - 项目类别: