Enabling Technologies for Sensory Feedback in Next-Generation Assistive Devices
下一代辅助设备中的感官反馈支持技术
基本信息
- 批准号:EP/M025977/1
- 负责人:
- 金额:$ 184.03万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An artificial arm, or prosthesis, is an example of technology that can be used to help somebody perform essential activities of daily living after a serious injury that results in the loss of their arm. Such activities might include eating, washing, opening doors, or shaking hands with a friend. Many artificial arms on the market these days are highly sophisticated, offering individual finger movement, and even movement of segments within a finger, that resemble the natural arm and hand. These prosthetic arms are often controlled by sensing the contractions in the muscles of the remaining arm to which the prosthesis is attached, allowing the user to operate the arm by flexing their muscles. However, one key aspect of artificial arms that is currently missing is the sense of feedback. In other words, the user does not know where the arm is or how wide open the hand is without looking at it, and if a delicate object is picked up, there is no sense of how hard it is being gripped. This leads to slow and awkward use of the artificial arm and prevents its use from becoming truly natural.The goal of this project is to develop technologies that will enable the next generation of assistive devices to provide truly natural control through enhanced sensory feedback. Our long-term vision is for artificial arms that provide the user with a sense of feedback that recreates the natural feedback associated with a real arm. To enable this level of feedback, we must meet two clear objectives: to generate artificial signals that mimic those of the natural arm and hand, and to provide a means of delivering those signals to the nervous system of a prosthesis user. These objectives will be achieved by: building new fingertip sensors to give the prosthesis a realistic sense of touch, including pressure, shear and temperature; developing a 'virtual hand' that mimics the nerve impulses that would be produced by a real hand, giving the user a sense of position of an artificial hand; and designing electrodes and a stimulation system that can deliver the simulated nerve impulses directly to the individual's nervous system.Building this level of feedback into prosthetic devices will enable much higher levels of function to be achieved than is currently possible. Device users would be able to naturally reach out and pick up a glass, for example, whilst maintaining eye contact in a conversation, or pick up an apple without bruising it. This will advance the field of prosthetics, provide enhanced function to prosthesis users and decrease the learning time involved when acquiring a new device.
假臂,或假肢,是一种技术的例子,可以用来帮助一个人在严重受伤后进行必要的日常生活活动,导致他们失去手臂。这样的活动可能包括吃饭、洗澡、开门或与朋友握手。如今市场上的许多人造手臂都非常复杂,可以单独移动手指,甚至可以移动手指内部的部分,就像天然的手臂和手一样。这些假肢通常是通过感知假肢所连接的剩余手臂肌肉的收缩来控制的,允许使用者通过伸展肌肉来操作手臂。然而,人工手臂目前缺乏的一个关键方面是反馈感觉。换句话说,使用者不看一眼就不知道手臂在哪里,手张开得有多大,如果拿起一个精致的物体,也感觉不到它被抓住的力度有多大。这导致了人工手臂的使用缓慢和笨拙,并阻止了它的使用变得真正自然。该项目的目标是开发技术,使下一代辅助设备能够通过增强的感觉反馈提供真正的自然控制。我们的长期愿景是为用户提供反馈感觉的人造手臂,重建与真实手臂相关的自然反馈。为了实现这种水平的反馈,我们必须达到两个明确的目标:产生模仿自然手臂和手的人造信号,以及提供一种将这些信号传递到假肢使用者的神经系统的方法。这些目标将通过以下方式实现:构建新的指尖传感器,使假肢具有逼真的触感,包括压力、剪切力和温度;开发一种模仿真手产生的神经脉冲的“虚拟手”,让使用者感觉到假手的位置;设计电极和刺激系统,可以将模拟的神经脉冲直接传递到个体的神经系统。将这种级别的反馈构建到假肢设备中,将能够实现比目前可能实现的更高水平的功能。例如,设备用户将能够自然地伸手拿起玻璃杯,同时在对话中保持眼神交流,或者拿起苹果而不会擦伤它。这将推动假肢领域的发展,为假肢用户提供增强的功能,并减少获得新设备时涉及的学习时间。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Processing occlusions using elastic-net hierarchical MAX model of the visual cortex
使用视觉皮层的弹性网络分层 MAX 模型处理遮挡
- DOI:10.1109/inista.2017.8001150
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Alameer A
- 通讯作者:Alameer A
An elastic net-regularized HMAX model of visual processing
- DOI:10.1049/cp.2015.1753
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Ali Alameer;G. Ghazaeil;P. Degenaar;K. Nazarpour
- 通讯作者:Ali Alameer;G. Ghazaeil;P. Degenaar;K. Nazarpour
Object Recognition With an Elastic Net-Regularized Hierarchical MAX Model of the Visual Cortex
- DOI:10.1109/lsp.2016.2582541
- 发表时间:2016-06
- 期刊:
- 影响因子:3.9
- 作者:Ali Alameer;Ghazal Ghazaei;P. Degenaar;J. Chambers;K. Nazarpour
- 通讯作者:Ali Alameer;Ghazal Ghazaei;P. Degenaar;J. Chambers;K. Nazarpour
Objects and scenes classification with selective use of central and peripheral image content
- DOI:10.1016/j.jvcir.2019.102698
- 发表时间:2020-01-01
- 期刊:
- 影响因子:2.6
- 作者:Alameer, Ali;Degenaar, Patrick;Nazarpour, Kianoush
- 通讯作者:Nazarpour, Kianoush
Improvement in modelling of physiological tremor by inclusion of grip force in quaternion weighted Fourier linear combiner
- DOI:10.1049/cp.2015.1782
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:K. Adhikari;S. Tatinati;K. Veluvolu;K. Nazarpour
- 通讯作者:K. Adhikari;S. Tatinati;K. Veluvolu;K. Nazarpour
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kianoush Nazarpour其他文献
Effect of Parkinson’s disease and two therapeutic interventions on muscle activity during walking: a systematic review
帕金森病和两种治疗干预对步行期间肌肉活动的影响:系统综述
- DOI:
10.1038/s41531-020-00119-w - 发表时间:
2020-09-09 - 期刊:
- 影响因子:8.200
- 作者:
Aisha Islam;Lisa Alcock;Kianoush Nazarpour;Lynn Rochester;Annette Pantall - 通讯作者:
Annette Pantall
Physical activity in young children across developmental and health states: the emActive/emCHILD study
不同发育和健康状态下幼儿的身体活动:emActive/emCHILD 研究
- DOI:
10.1016/j.eclinm.2023.102008 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:10.000
- 作者:
Niina Kolehmainen;Christopher Thornton;Olivia Craw;Mark S. Pearce;Laura Kudlek;Kianoush Nazarpour;Laura Cutler;Esther Van Sluijs;Tim Rapley - 通讯作者:
Tim Rapley
Multi-Step Prediction of Physiological Tremor With Random Quaternion Neurons for Surgical Robotics Applications
用于手术机器人应用的随机四元数神经元生理震颤的多步预测
- DOI:
10.1109/access.2018.2852323 - 发表时间:
2018-07 - 期刊:
- 影响因子:3.9
- 作者:
Yubo Wang;Sivanagaraja Tatinati;Kabita Adhikari;Liyu Huang;Kianoush Nazarpour;Wei Tech Ang;Kalyana C.Veluvolu - 通讯作者:
Kalyana C.Veluvolu
EMG Dataset for Gesture Recognition with Arm Translation
用于手臂平移手势识别的肌电图数据集
- DOI:
10.1038/s41597-024-04296-8 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:6.900
- 作者:
Iris Kyranou;Katarzyna Szymaniak;Kianoush Nazarpour - 通讯作者:
Kianoush Nazarpour
Kianoush Nazarpour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kianoush Nazarpour', 18)}}的其他基金
Facilitating health and wellbeing by developing systems for early recognition of urinary tract infections - Feather
通过开发尿路感染早期识别系统促进健康和福祉 - Feather
- 批准号:
EP/W031493/1 - 财政年份:2022
- 资助金额:
$ 184.03万 - 项目类别:
Research Grant
Sensorimotor Learning for Control of Prosthetic Limbs
用于控制假肢的感觉运动学习
- 批准号:
EP/R004242/2 - 财政年份:2020
- 资助金额:
$ 184.03万 - 项目类别:
Research Grant
Sensorimotor Learning for Control of Prosthetic Limbs
用于控制假肢的感觉运动学习
- 批准号:
EP/R004242/1 - 财政年份:2018
- 资助金额:
$ 184.03万 - 项目类别:
Research Grant
A Translational Alliance between Newcastle University and Ossur
纽卡斯尔大学与奥索之间的转化联盟
- 批准号:
EP/N023080/1 - 财政年份:2016
- 资助金额:
$ 184.03万 - 项目类别:
Research Grant
Simultaneous Control of Multiple Degrees of Freedom in Myoelectric Hand Prostheses (SimCon)
肌电假手多个自由度的同时控制 (SimCon)
- 批准号:
EP/M025594/1 - 财政年份:2015
- 资助金额:
$ 184.03万 - 项目类别:
Research Grant
相似海外基金
Using digital and immersive technologies to understand the contribution of sensory, perceptual, affective, cognitive and physiological factors to Social Information Processing
使用数字和沉浸式技术来了解感觉、知觉、情感、认知和生理因素对社会信息处理的贡献
- 批准号:
RGPIN-2020-04966 - 财政年份:2022
- 资助金额:
$ 184.03万 - 项目类别:
Discovery Grants Program - Individual
MuseIT_Multi-sensory, User-centred, Shared cultural Experiences through Interactive Technologies
MuseIT_多感官、以用户为中心、通过交互技术共享文化体验
- 批准号:
10040413 - 财政年份:2022
- 资助金额:
$ 184.03万 - 项目类别:
EU-Funded
An interdisciplinary training program for sensory-motor adaptive rehabilitation technologies (SMART)
感觉运动适应性康复技术(SMART)的跨学科培训计划
- 批准号:
555318-2021 - 财政年份:2022
- 资助金额:
$ 184.03万 - 项目类别:
Collaborative Research and Training Experience
An interdisciplinary training program for sensory-motor adaptive rehabilitation technologies (SMART)
感觉运动适应性康复技术(SMART)的跨学科培训计划
- 批准号:
555318-2021 - 财政年份:2021
- 资助金额:
$ 184.03万 - 项目类别:
Collaborative Research and Training Experience
Using digital and immersive technologies to understand the contribution of sensory, perceptual, affective, cognitive and physiological factors to Social Information Processing
使用数字和沉浸式技术来了解感觉、知觉、情感、认知和生理因素对社会信息处理的贡献
- 批准号:
RGPIN-2020-04966 - 财政年份:2021
- 资助金额:
$ 184.03万 - 项目类别:
Discovery Grants Program - Individual
Using digital and immersive technologies to understand the contribution of sensory, perceptual, affective, cognitive and physiological factors to Social Information Processing
使用数字和沉浸式技术来了解感觉、知觉、情感、认知和生理因素对社会信息处理的贡献
- 批准号:
RGPIN-2020-04966 - 财政年份:2020
- 资助金额:
$ 184.03万 - 项目类别:
Discovery Grants Program - Individual
Research in sensory information technologies and implementation in sleep disorder monitoring
感觉信息技术研究及其在睡眠障碍监测中的应用
- 批准号:
493908-2016 - 财政年份:2018
- 资助金额:
$ 184.03万 - 项目类别:
Strategic Projects - Group
Research in sensory information technologies and implementation in sleep disorder monitoring
感觉信息技术研究及其在睡眠障碍监测中的应用
- 批准号:
493908-2016 - 财政年份:2017
- 资助金额:
$ 184.03万 - 项目类别:
Strategic Projects - Group
Promoting the Integration of Intelligent Human Assistants in Society through the Development of Robotic Sensory-based Intelligence and Control Technologies
通过发展机器人感知智能与控制技术,促进智能人类助手融入社会
- 批准号:
356301-2013 - 财政年份:2017
- 资助金额:
$ 184.03万 - 项目类别:
Discovery Grants Program - Individual
Promoting the Integration of Intelligent Human Assistants in Society through the Development of Robotic Sensory-based Intelligence and Control Technologies
通过发展机器人感知智能与控制技术,促进智能人类助手融入社会
- 批准号:
356301-2013 - 财政年份:2016
- 资助金额:
$ 184.03万 - 项目类别:
Discovery Grants Program - Individual