Stable and unstable cohomology of moduli spaces

模空间的稳定和不稳定上同调

基本信息

  • 批准号:
    EP/M027783/1
  • 负责人:
  • 金额:
    $ 11.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

In classical mathematics, mathematical objects and their properties are usually considered one at a time: we might consider a triangle in the plane, with its associated lengths and angles, and ask questions about it, such as what is its perimeter, or area. In the 20th Century it became increasingly understood that it can be profitable to consider the collection of all mathematical objects of some type: we might consider the space whose points correspond to triangles in the plane, in which moving the three vertices of the triangle around defines a path.These spaces of mathematical objects, "moduli spaces" as they are known, have become an object of study which can be approached from many areas of mathematics, each of which give a particular insight. The most intensely studied moduli space, and the first example of one, is the moduli space of Riemann surfaces. This is difficult to visualise directly: a point of this space corresponds to a surface, such as a ball or the layer of sugar on a (American) doughnut, and moving around in this space corresponds to bending and stretching the surface. Because this space is so difficult to visualise, abstract tools must be used to get a feel for it: to get an idea of the topological complexity of the space, the most successful of these are homology and cohomology.This project will investigate moduli spaces of higher-dimensional manifolds, focussing on their homology and cohomology. That is, it will consider spaces whose points are d-dimensional manifolds (so rather than being surfaces, which locally look like 2-dimensional space, they are spaces which locally look like d-dimensional space), and where movement in this space corresponds to bending and stretching. Manifolds are the fundamental objects studied in Geometry, so the space of all manifolds of a given dimension is intimately related to many questions that can be asked in this subject. Part of this project is to use and develop a strong new tool which has been created by Galatius and the PI, in order to investigate geometric questions in a certain ``stable range". In addition, the project will introduce new methods to understand moduli spaces of manifolds outside of this ``stable range", where a systematic picture is lacking.
在古典数学中,数学对象及其属性通常一次考虑一个:我们可能会考虑平面上的三角形及其相关的长度和角度,并询问有关它的问题,例如它的周长或面积是多少。在20世纪,人们越来越认识到,考虑某种类型的所有数学对象的集合是有益的:我们可以考虑其点对应于平面中的三角形的空间,在该空间中,移动三角形的三个顶点定义了一条路径。这些数学对象的空间,如它们所知的“模空间”,已经成为一个研究的对象,可以从数学的许多领域,其中每一个给一个特定的见解接近。研究最深入的模空间,也是第一个例子,是黎曼曲面的模空间。这很难直接可视化:这个空间的一个点对应于一个表面,比如一个球或(美国)甜甜圈上的一层糖,在这个空间中移动对应于弯曲和拉伸表面。由于这种空间很难可视化,因此必须使用抽象的工具来感受它:为了了解空间的拓扑复杂性,其中最成功的是同调和上同调。本项目将研究高维流形的模空间,重点是它们的同调和上同调。也就是说,它将考虑其点是d维流形的空间(所以不是表面,局部看起来像2维空间,而是局部看起来像d维空间的空间),并且在这个空间中的运动对应于弯曲和拉伸。流形是几何学研究的基本对象,因此给定维数的所有流形的空间与这个学科中可以提出的许多问题密切相关。这个项目的一部分是使用和开发一个强大的新工具,这是由加拉休斯和PI创建的,以便在一定的“稳定范围”内研究几何问题。此外,该项目将引入新的方法来理解这个“稳定范围”之外的流形的模空间,在那里缺乏系统的图片。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Operations on stable moduli spaces.
稳定模空间上的运算。
  • DOI:
    10.17863/cam.50779
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Galatius S
  • 通讯作者:
    Galatius S
Tautological rings for high-dimensional manifolds
高维流形的同义反复环
  • DOI:
    10.17863/cam.7474
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Galatius S
  • 通讯作者:
    Galatius S
The positive scalar curvature cobordism category
正标量曲率共边范畴
  • DOI:
    10.1215/00127094-2022-0023
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Ebert J
  • 通讯作者:
    Ebert J
Infinite loop spaces and positive scalar curvature in the presence of a fundamental group
存在基本群时的无限循环空间和正标量曲率
  • DOI:
    10.2140/gt.2019.23.1549
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Ebert J
  • 通讯作者:
    Ebert J
Semi-simplicial spaces
半单纯空间
  • DOI:
    10.48550/arxiv.1705.03774
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ebert Johannes
  • 通讯作者:
    Ebert Johannes
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oscar Randal-Williams其他文献

Correction: Monodromy and mapping class groups of 3-dimensional hypersurfaces
  • DOI:
    10.1007/s00208-024-02990-x
  • 发表时间:
    2024-09-20
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Oscar Randal-Williams
  • 通讯作者:
    Oscar Randal-Williams
Monodromy and mapping class groups of 3-dimensional hypersurfaces
  • DOI:
    10.1007/s00208-024-02951-4
  • 发表时间:
    2024-08-21
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Oscar Randal-Williams
  • 通讯作者:
    Oscar Randal-Williams
Cohomology of automorphism groups of free groups with twisted coefficients
  • DOI:
    10.1007/s00029-017-0311-0
  • 发表时间:
    2017-02-16
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Oscar Randal-Williams
  • 通讯作者:
    Oscar Randal-Williams

Oscar Randal-Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

大麻素CB2受体:巨噬细胞efferocytosis功能调控和不稳定斑块防治的新靶点
  • 批准号:
    81000086
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
TRPC1/5通道-细胞内Ca2+调节平滑肌细胞功能在动脉粥样硬化斑块不稳定性中的作用
  • 批准号:
    30800468
  • 批准年份:
    2008
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enzyme engineering to protect unstable metabolic intermediates in synthetic pathways
酶工程保护合成途径中不稳定的代谢中间体
  • 批准号:
    24K17829
  • 财政年份:
    2024
  • 资助金额:
    $ 11.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Magnetic properties of unstable nuclei: calculations of magnetic moments and distribution of nuclear magnetisation
不稳定原子核的磁特性:磁矩和核磁化强度分布的计算
  • 批准号:
    2782677
  • 财政年份:
    2023
  • 资助金额:
    $ 11.58万
  • 项目类别:
    Studentship
Using oncolytic viral therapy to target the tumour microenvironment in chromosomally unstable cancers
使用溶瘤病毒疗法靶向染色体不稳定癌症的肿瘤微环境
  • 批准号:
    2885348
  • 财政年份:
    2023
  • 资助金额:
    $ 11.58万
  • 项目类别:
    Studentship
Unstable nucleus accumbens social representations in models of social behavioral dysfunction.
不稳定的伏核在社会行为功能障碍模型中具有社会表征。
  • 批准号:
    10735723
  • 财政年份:
    2023
  • 资助金额:
    $ 11.58万
  • 项目类别:
Influences of Coherent Structures on Validity of the Constant Flux Layer Assumptions in the Unstable Atmospheric Surface Layer
不稳定大气表层相干结构对恒定通量层假设有效性的影响
  • 批准号:
    2325687
  • 财政年份:
    2023
  • 资助金额:
    $ 11.58万
  • 项目类别:
    Standard Grant
New horiazon of the unstable nuclei research opened by isobar separator development
等压分离器的开发开辟了不稳定核研究的新视野
  • 批准号:
    23H01204
  • 财政年份:
    2023
  • 资助金额:
    $ 11.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Implementation of an innovative generic RI stationary target to study unstable nuclear photoabsorption reactions
实施创新的通用 RI 固定靶来研究不稳定的核光吸收反应
  • 批准号:
    23H00113
  • 财政年份:
    2023
  • 资助金额:
    $ 11.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of RFQ-type isobar filters leading inovative research on unstable nuclear reactions
RFQ 型等压线过滤器的开发引领不稳定核反应的创新研究
  • 批准号:
    23K17307
  • 财政年份:
    2023
  • 资助金额:
    $ 11.58万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Multisite feasibility of BA-HD: An integrated depression and behavioral risk factor reduction coaching program following acute coronary syndrome
BA-HD 的多地点可行性:急性冠脉综合征后的综合抑郁症和行为危险因素减少辅导计划
  • 批准号:
    10680636
  • 财政年份:
    2023
  • 资助金额:
    $ 11.58万
  • 项目类别:
Precise measurement of charge density distribution of Sn unstable isotopes by advanced innovative SCRIT electron scattering
通过先进的创新 SCIT 电子散射精确测量 Sn 不稳定同位素的电荷密度分布
  • 批准号:
    23H05436
  • 财政年份:
    2023
  • 资助金额:
    $ 11.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了