Quantum Microwave Sensor

量子微波传感器

基本信息

  • 批准号:
    EP/N003675/1
  • 负责人:
  • 金额:
    $ 153.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

This project brings atomic physics and cryogenic research together to establish the Geonium Chip as a pioneering, practical quantum technology. The chip's core element is the Coplanar Waveguide Penning trap, conceived and developed by the PI at the University of Sussex. It has a broad range of applications, including quantum computation and metrology, mass spectrometry and the physics of strongly correlated electrons. The project will focus on one concrete goal: the implementation of a broadband, tuneable, quantum non-demolition detector of single microwave photons.An efficient detector of single microwave (MW) photons is a fundamental tool still missing in quantum technology. Such detectors are essential for determining the quantum state of GHz radiation fields and thus vital for quantum communication/information applications with microwaves. While several alternatives based upon super- and semiconductor technologies are being developed, the first observations of individual microwave photons employed a trapped electron as transducer. We will develop the electrons as functional sensors, with unique capabilities for the observation and coherent manipulation of quantum MW fields, initially within the frequency range 3-60 GHz.Cryogenic Penning traps permit an accurate control of the dynamics of a trapped electron, at the level of inducing and observing quantum jumps between its Fock-states. The rest gas pressure in cryogenic vacuum chambers amounts to 10^(-16) mbar, allowing for a very prolonged capture (months) of the particles. The continuous Stern-Gerlach effect permits the detection and manipulation of the electron's spin, while the Purcell effect enhances the coherence time of its quantum state. Hence, cryogenic Penning traps are excellent quantum laboratories and trapped electrons have been proposed for implementing a quantum processor. A single electron in a Penning trap is also known as a geonium atom, as coined by the 1989 Nobel laureate Hans Dehmelt. It is outstanding for ultra-high precision metrology. Examples are the free electron's g-factor, measured with 10^(-13) relative uncertainty and the proton-to-electron mass ratio with 10^(-10). These, and other advanced Penning trap experiments, invariably employ a big, "room-size", superconducting solenoid. We propose to radically change that concept: integrating the trap and the magnetic field source in a single, scalable (2nd generation) Geonium Chip.Within this project we will develop the 2nd generation Geonium Chip into a practical quantum technology. A functional microwave photon detector must provide the following critical features: a) A tuneable, broadband detection range b) Quantum Non Demolition detection c) High quantum efficiency d) Coherent connectivity to other systems e) Scalability and a cost as low as possible. The currently most advanced Penning traps use superconducting solenoids, requiring highly specialised engineers to tune the trapping magnetic field -and hence the detection range-. Moreover, cooling to 100 mK or lower is done with extremely expensive (> £ 350 000) dilution refrigerators, difficult to install and operate. This contrasts radically with our novel Geonium platform, which will eliminate solenoid and dilution refrigerator altogether. With this pioneering approach, we will reduce the cost and complexity, enabling our chip Penning trap as a useful quantum 2.0 technology, particularly as a single microwave photon detector.
该项目将原子物理学和低温研究结合在一起,将 Geium 芯片打造为一项开创性的实用量子技术。该芯片的核心元件是共面波导潘宁陷阱,由萨塞克斯大学的 PI 构思和开发。它具有广泛的应用,包括量子计算和计量、质谱和强相关电子物理学。该项目将专注于一个具体目标:实现宽带、可调谐、单微波光子的量子非破坏探测器。高效的单微波(MW)光子探测器是量子技术中仍然缺失的一种基本工具。此类探测器对于确定 GHz 辐射场的量子态至关重要,因此对于微波的量子通信/信息应用至关重要。虽然正在开发基于超级和半导体技术的几种替代方案,但对单个微波光子的首次观测采用了俘获电子作为换能器。我们将开发电子作为功能传感器,具有独特的能力来观察和相干操纵量子MW场,最初在3-60 GHz的频率范围内。低温潘宁陷阱允许精确控制被捕获电子的动力学,在诱导和观察其福克态之间的量子跃迁的水平上。低温真空室中的剩余气压达到 10^(-16) mbar,可以长时间捕获颗粒(数月)。连续的斯特恩-格拉赫效应允许检测和操纵电子的自旋,而珀塞尔效应则增强了其量子态的相干时间。因此,低温潘宁陷阱是优秀的量子实验室,并且已提出捕获电子来实现量子处理器。潘宁陷阱中的单个电子也称为铍原子,由 1989 年诺贝尔奖获得者汉斯·德梅尔特 (Hans Dehmelt) 创造。它在超高精度计量方面表现出色。例如自由电子的 g 因子,以 10^(-13) 相对不确定度测量,质子与电子质量比以 10^(-10) 测量。这些以及其他先进的潘宁陷阱实验,总是采用一个大的、“房间大小”的超导螺线管。我们建议从根本上改变这个概念:将陷阱和磁场源集成在一个可扩展的(第二代)Geium 芯片中。在这个项目中,我们将把第二代 Geium 芯片开发成实用的量子技术。功能性微波光子探测器必须提供以下关键特性:a) 可调谐、宽带探测范围 b) 量子非破坏探测 c) 高量子效率 d) 与其他系统的相干连接 e) 可扩展性和尽可能低的成本。目前最先进的潘宁陷阱使用超导螺线管,需要高度专业的工程师来调整捕获磁场,从而调整检测范围。此外,冷却至 100 mK 或更低是通过极其昂贵(> 350 000 英镑)的稀释制冷机完成的,难以安装和操作。这与我们新颖的 Geium 平台形成鲜明对比,该平台将完全消除电磁阀和稀释制冷机。通过这种开创性的方法,我们将降低成本和复杂性,使我们的芯片潘宁陷阱成为一种有用的量子 2.0 技术,特别是作为单微波光子探测器。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High frequency properties of a planar ion trap fabricated on a chip.
在芯片上制造的平面离子阱的高频特性。
Coherent coupling of a trapped electron to a distant superconducting microwave cavity
  • DOI:
    10.1063/5.0023002
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    4
  • 作者:
    A. Cridland Mathad;J. Lacy;J. Pinder;A. Uribe;R. Willetts;Raquel Alvarez;J. Verdú
  • 通讯作者:
    A. Cridland Mathad;J. Lacy;J. Pinder;A. Uribe;R. Willetts;Raquel Alvarez;J. Verdú
The quantum theory of the Penning trap
潘宁陷阱的量子理论
  • DOI:
    10.1080/09500340.2017.1393570
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Crimin F
  • 通讯作者:
    Crimin F
Superconducting Flux Pump for a Planar Magnetic Field Source
  • DOI:
    10.1109/tasc.2020.3004768
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    J. Lacy;April Cridland;J. Pinder;A. Uribe;R. Willetts;J. Verdú
  • 通讯作者:
    J. Lacy;April Cridland;J. Pinder;A. Uribe;R. Willetts;J. Verdú
Planar, strong magnetic field source for a chip ion trap.
用于芯片离子阱的平面强磁场源。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Verdu Galiana其他文献

Jose Verdu Galiana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Verdu Galiana', 18)}}的其他基金

Trapped electron for neutrino mass measurement.
用于中微子质量测量的捕获电子。
  • 批准号:
    ST/W006480/1
  • 财政年份:
    2022
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Research Grant
Quantum Geonium Mass Sensor. A route to market feasibility
量子吉尼姆质量传感器。
  • 批准号:
    EP/R008558/1
  • 财政年份:
    2017
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Research Grant
The CPW-cavity planar Penning trap. Circuit-QED with trapped electrons and planar superconducting microwave cavities in a chip.
CPW 腔平面潘宁阱。
  • 批准号:
    EP/I012850/1
  • 财政年份:
    2010
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Research Grant

相似海外基金

Research and Development of Beam Forming Microwave Sensor for Non-Contact Sleeping Condition Measurement in Multi-Spot
多点非接触睡眠状态测量波束形成微波传感器的研发
  • 批准号:
    19K14998
  • 财政年份:
    2019
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Microwave Sensor for Microfluidics
微流控微波传感器的开发
  • 批准号:
    539674-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 153.49万
  • 项目类别:
    University Undergraduate Student Research Awards
Estimation of relative change in blood pressure by non-contact measurements using a single microwave sensor and applications for healthcare
使用单个微波传感器进行非接触式测量来估计血压的相对变化以及医疗保健应用
  • 批准号:
    19K12884
  • 财政年份:
    2019
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Contact Biometric Identification and Authentication Using Microwave Doppler Sensor
使用微波多普勒传感器的非接触式生物特征识别和认证
  • 批准号:
    18K19784
  • 财政年份:
    2018
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Soil water content map construction using microwave sensor and agro-hydrological model**
使用微波传感器和农业水文模型构建土壤含水量图**
  • 批准号:
    535914-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Engage Grants Program
Hybrid near field microwave imaging incorporating multistatic adaptive wavefront reconstruction and micro-sensor arrays for breast cancer detection
混合近场微波成像结合多基地自适应波前重建和微传感器阵列用于乳腺癌检测
  • 批准号:
    401952-2011
  • 财政年份:
    2016
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Discovery Grants Program - Individual
Microwave Sensor as Water Cut Analyzer
微波传感器作为含水分析仪
  • 批准号:
    485870-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Engage Grants Program
Hybrid near field microwave imaging incorporating multistatic adaptive wavefront reconstruction and micro-sensor arrays for breast cancer detection
混合近场微波成像结合多基地自适应波前重建和微传感器阵列用于乳腺癌检测
  • 批准号:
    401952-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Discovery Grants Program - Individual
Design of a Conformable Sensor System to Extract Microwave Imaging Data
提取微波成像数据的整合传感器系统设计
  • 批准号:
    465417-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Chipless Microwave RFID based on Printed Circuit Technology: Sensor Integration, Tag Localization and Robustness Optimization
基于印刷电路技术的无芯片微波 RFID:传感器集成、标签定位和鲁棒性优化
  • 批准号:
    240171326
  • 财政年份:
    2013
  • 资助金额:
    $ 153.49万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了