Dislocation based modelling of deformation and fracture in real engineering alloys

基于位错的实际工程合金变形和断裂建模

基本信息

  • 批准号:
    EP/N007239/1
  • 负责人:
  • 金额:
    $ 85.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

If loaded a small amount, a metal will deform elastically, returning to its original shape when the load is removed. However if the load exceeds some value, then permanent deformation occurs, known as plasticity. Plasticity is far more complex to understand than elasticity as it involves breaking lines of atomic bonds in the metal. These lines of broken atomic bonds are called dislocations. This is analogous to the motion of a caterpillar: which does not attempt to move its whole body forward simultaneously; instead it incrementally moves its body forward in a wave of motion sweeping through the caterpillar's body. Metals contains a huge number of dislocations: these lines sweep through the metal allowing atomic planes to slip over each over, causing the metal to be permanently deformed. When metal is loaded, new dislocations are nucleated and some become trapped at obstacles. However, if the load is applied too quickly or the metal is too cold, then the dislocation lines do not have time to nucleate and move: instead whole planes of atoms are ripped apart, fracturing the metal.In a nuclear reactor, the fuel rods are cladded in a zirconium alloy: over time, hydrogen from water used to cool the fuel rods, diffuses into the zirconium and is attracted to dislocation lines and to any small cracks or notches in the metal. If the hydrogen concentration becomes too high, hydrogen atoms will clump together to form precipitates which block dislocation motion and can easily fracture. It is this complex interaction between, dislocations, diffusion, precipitate formation and fracture which I aim to simulate on a computer. This is possible by utilising the power of modern graphics cards (developed to play video games) which allow massively parallel simulations to be performed easily and at little cost. Even then it is only possible to simulate a very small volume of material. Traditional mechanical tests (bending or compressing pieces of metal) were always performed on large specimens, several millimetres in size, meaning it was simply not possible to simulate all the dislocations in the sample explicitly. In the last decade it has become possible to perform mechanical tests on samples that are only a few microns in size. The samples are so small, that by utilizing the power of modern graphics cards, it will be possible to simulate the experiment including every dislocation in the material explicitly, and watch how they interact with each other and with multiple precipitates. Being able to simulate an entire experiment at this level of detail is unprecedented and it will provide new insights into the details of what exactly goes on when metal deforms plastically and fractures. The fundamental new insights gained during the project will be used to develop more accurate engineering design rules for industry and involves close collaboration with scientists and engineers at Lawrence Livermore National Laboratory in California, Imperial College London, Culham Centre for Fusion Energy in Oxfordshire, The National Physical Laboratory in Teddington and Rolls-Royce in Derby.
如果载荷很小,金属就会发生弹性变形,在卸除载荷后恢复到原来的形状。但是,如果载荷超过某个值,则会发生永久变形,称为塑性。塑性比弹性要复杂得多,因为它涉及到金属中原子键的断裂。这些断裂的原子键线被称为位错。这类似于毛毛虫的运动:它不试图同时移动整个身体;相反,它会以一种席卷毛毛虫身体的运动波的方式,逐渐向前移动身体。金属中含有大量的位错:这些线横扫金属,使原子面相互滑动,导致金属永久变形。当金属被加载时,新的位错形成核,一些位错被困在障碍物上。然而,如果载荷施加得太快或金属太冷,那么位错线就没有时间成核和移动:相反,整个原子平面被撕裂,导致金属断裂。在核反应堆中,燃料棒包裹在锆合金中:随着时间的推移,用于冷却燃料棒的水中的氢扩散到锆中,并被位错线和金属中的任何小裂缝或缺口所吸引。如果氢浓度过高,氢原子会聚集在一起形成沉淀,阻碍位错运动,容易断裂。这是位错、扩散、沉淀形成和断裂之间复杂的相互作用,我的目标是在计算机上模拟。这可以通过利用现代显卡(为玩视频游戏而开发)的能力来实现,它允许以很少的成本轻松地执行大规模并行模拟。即使这样,也只能模拟非常小体积的材料。传统的机械测试(弯曲或压缩金属片)总是在几毫米大小的大型样品上进行,这意味着根本不可能明确地模拟样品中的所有位错。在过去的十年里,对只有几微米大小的样品进行机械测试已经成为可能。样品是如此之小,以至于通过利用现代显卡的能力,可以模拟实验,包括材料中的每一个位错,并观察它们如何相互作用以及与多种沉淀。能够以这种细节水平模拟整个实验是前所未有的,它将为金属塑性变形和断裂的具体情况提供新的见解。在该项目中获得的基本新见解将用于为工业开发更准确的工程设计规则,并涉及与加利福尼亚州劳伦斯利弗莫尔国家实验室、伦敦帝国理工学院、牛津郡Culham聚变能中心、特丁顿国家物理实验室和德比劳斯莱斯公司的科学家和工程师密切合作。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Consistent determination of geometrically necessary dislocation density from simulations and experiments
  • DOI:
    10.1016/j.ijplas.2018.05.001
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Das, Suchandrima;Hofmann, Felix;Tarleton, Edmund
  • 通讯作者:
    Tarleton, Edmund
Erratum: "Orientation-dependent indentation response of helium-implanted tungsten" [Appl. Phys. Lett. 114 , 221905 (2019)]
勘误表:“氦注入钨的方向依赖性压痕响应”[Appl。
  • DOI:
    10.1063/1.5126197
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Das S
  • 通讯作者:
    Das S
Modified deformation behaviour of self-ion irradiated tungsten: A combined nano-indentation, HR-EBSD and crystal plasticity study
  • DOI:
    10.1016/j.ijplas.2020.102817
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Das, Suchandrima;Yu, Hongbing;Hofmann, Felix
  • 通讯作者:
    Hofmann, Felix
Orientation-dependent indentation response of helium-implanted tungsten
  • DOI:
    10.1063/1.5097403
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Suchandrima Das;Hongbing Yu;E. Tarleton;F. Hofmann
  • 通讯作者:
    Suchandrima Das;Hongbing Yu;E. Tarleton;F. Hofmann
Modelling the coupling between hydrogen diffusion and the mechanical behaviour of metals
  • DOI:
    10.1016/j.commatsci.2016.05.030
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Barrera, O.;Tarleton, E.;Cocks, A. C. F.
  • 通讯作者:
    Cocks, A. C. F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edmund Tarleton其他文献

Modelling the Bauschinger effect in copper during preliminary load cycles
对铜在预加载循环过程中的包辛格效应进行建模
  • DOI:
    10.1016/j.actamat.2025.120886
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Alvaro Martinez-Pechero;Eralp Demir;Chris Hardie;Yevhen Zayachuk;Anna Widdowson;Edmund Tarleton
  • 通讯作者:
    Edmund Tarleton
OXFORD-UMAT: An efficient and versatile crystal plasticity framework
牛津-UMAT:一个高效且通用的晶体塑性框架
  • DOI:
    10.1016/j.ijsolstr.2024.113110
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Eralp Demir;Alvaro Martinez-Pechero;Chris Hardie;Edmund Tarleton
  • 通讯作者:
    Edmund Tarleton
Discrete dislocation dynamics simulations of math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si6.svg" display="inline" id="d1e4143" class="math"mrowmo〈/momia/mimo〉/mo/mrow/math-type prismatic loops in zirconium
锆中棱柱位错环的离散位错动力学模拟
  • DOI:
    10.1016/j.ijplas.2023.103802
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    12.800
  • 作者:
    Daniel Hortelano-Roig;Rakesh Kumar;Daniel S. Balint;Edmund Tarleton
  • 通讯作者:
    Edmund Tarleton
Localised stress and strain distribution in sliding
滑动中的局部应力和应变分布
  • DOI:
    10.1016/j.scriptamat.2025.116662
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Anna Kareer;Eralp Demir;Edmund Tarleton;Christopher Hardie
  • 通讯作者:
    Christopher Hardie
Bend Testing of Silicon Microcantilevers from 21°C to 770°C
  • DOI:
    10.1007/s11837-015-1618-y
  • 发表时间:
    2015-09-14
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    David E. J. Armstrong;Edmund Tarleton
  • 通讯作者:
    Edmund Tarleton

Edmund Tarleton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edmund Tarleton', 18)}}的其他基金

MAINTAiN - Multi-scAle INTegrity assessment for Advanced high-temperature Nuclear systems
维护 - 先进高温核系统的多尺度完整性评估
  • 批准号:
    EP/R013136/1
  • 财政年份:
    2018
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Research Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
  • 批准号:
    23K25176
  • 财政年份:
    2024
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Collaborative R&D
TwinSSI: Digital Twin Modelling for Soil-Structure-Interaction based on CutFEM and BIM technologies
TwinSSI:基于 CutFEM 和 BIM 技术的土壤-结构相互作用数字孪生建模
  • 批准号:
    EP/Z001072/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Fellowship
Using AI based modelling to drive the engineering of biology
使用基于人工智能的建模来推动生物学工程
  • 批准号:
    BB/Y514056/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Research Grant
Mathematically modelling tuberculosis: using lung scans to map infection, and a hybrid individual-based model to simulate infection and treatment
对结核病进行数学建模:使用肺部扫描来绘制感染图,并使用基于个体的混合模型来模拟感染和治疗
  • 批准号:
    MR/Y010124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Fellowship
Probabilistic Agent-Based Modelling for Predicting School Attendance
用于预测入学率的基于概率代理的建模
  • 批准号:
    2887257
  • 财政年份:
    2023
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Studentship
Sharing the Road: Exploring transitions away from private vehicle ownership through agent-based modelling
共享道路:通过基于代理的建模探索从私人车辆所有权的转变
  • 批准号:
    2887300
  • 财政年份:
    2023
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Studentship
HIGH-FIDELITY MODELLING OF POWDER-BASED ADDITIVE MANUFACTURING PROCESSES
基于粉末的增材制造过程的高保真建模
  • 批准号:
    EP/X024180/1
  • 财政年份:
    2023
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Fellowship
Modelling the Future of Home Health for Seniors - A Markov based Cost Effectiveness Analysis
模拟老年人家庭健康的未来 - 基于马尔可夫的成本效益分析
  • 批准号:
    484653
  • 财政年份:
    2023
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Fellowship Programs
Modelling of photochemical water splitting based on charge accumulation in macrocycles
基于大环电荷积累的光化学分解水建模
  • 批准号:
    2889683
  • 财政年份:
    2023
  • 资助金额:
    $ 85.12万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了