Future Liquid Metal Engineering Hub
未来液态金属工程中心
基本信息
- 批准号:EP/N007638/1
- 负责人:
- 金额:$ 1340.79万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural resources are the foundation of our life on Earth, without which neither our economy nor society can function. However, due to continued resource overconsumption and the rapidly increasing world population, the global demand for natural resources and the related intense pressure on our environment have reached an unprecedented and unsustainable level. A shocking fact is that our cumulative consumption of natural resources over the last 60 years is greater than that over the whole of previous human history. With an anticipated world population of 9.3bn in 2050, the predicted global natural resource consumption will be almost tripled. This level of overconsumption is obviously not sustainable, and there is a compelling need for us to use our advanced science and technology to work with, rather than to exploit, nature. Metallic materials are the backbone of manufacturing and the fuel for economic growth. However, metal extraction and refining is extremely energy intensive and causes a huge negative impact on our environment. The world currently produces 50MT of Al and 2bnT of steel each year, accounting for 7-8% of the world's total energy consumption and 8% of the total global CO2 emission. Clearly, we cannot continue this increasing and dissipative use of our limited natural resources. However, the good news is that metals are in principle infinitely recyclable and that their recycling requires only a small fraction of the energy required for primary metal production. Between 1908 and 2007 we produced 833MT of aluminium, 506MT of copper and 33bnT of steels. It is estimated that more than 50% of this metal still exists as accessible stock in our society. Such metal stock will become our energy "bank" and a rich resource for meeting our future needs. The UK metal casting industry adds £2.6bn/yr to the UK economy, employs 30,000 people, produces 1.14bnT of metal castings per year and underpins the competitive position of every sector of UK manufacturing. However, the industry faces severe challenges, including "hollowing-out" over the past 30 years, increasing energy and materials costs, tightening environmental regulations and a short supply of skilled people. We are now establishing the Future Liquid Metal Engineering Hub to address these challenges. The core Hub activities will be based at Brunel strongly supported by the complementary expertise of our academic spokes at Oxford, Leeds, Manchester and Imperial College and with over £40M investment from our industrial partners. The Hub's long-term vision is full metal circulation, in which the global demand for metallic materials is met by a full circulation of secondary metals (with only limited addition of primary metals each year) through reduced usage, reuse, remanufacture, closed-loop recycling and effective recovery and refining of secondary metals. This represents a paradigm shift for metallurgical science, manufacturing technology and the industrial landscape. The Hub aims to lay down a solid foundation for full metal circulation, demonstrated initially with light metals and then extended to other metals in the longer term. We have identified closed-loop recycling of metallic materials as the greatest challenge and opportunity facing global manufacturing industry, and from this we have co-created with our industrial partners the Hub's research programme. We will conduct fundamental research to deliver a nucleation centred solidification science to underpin closed-loop recycling; we will carry out applied research to develop recycling-friendly high performance metallic materials and sustainable metal processing technologies to enable closed-loop recycling; we will operate a comprehensive outreach programme to engage potential stakeholders to ensure the widest possible impact of our research; we will embed a centre for doctoral training in liquid metal engineering to train future leaders to deliver long-lasting benefits of closed-loop recycling.
自然资源是我们在地球上生活的基础,没有它,我们的经济和社会都无法运作。然而,由于资源持续过度消费和世界人口迅速增加,全球对自然资源的需求以及对我们环境的相关巨大压力已达到前所未有和不可持续的程度。一个令人震惊的事实是,我们在过去60年中对自然资源的累积消耗超过了整个人类历史。预计到2050年,世界人口将达到93亿,预计全球自然资源消耗量将增加近两倍。这种过度消费的水平显然是不可持续的,我们迫切需要利用先进的科学和技术与自然合作,而不是利用自然。金属材料是制造业的支柱和经济增长的燃料。然而,金属提取和精炼是非常耗能的,对我们的环境造成巨大的负面影响。目前,世界每年生产5000万吨铝和20亿吨钢,占世界能源消耗总量的7-8%,占全球二氧化碳排放总量的8%。显然,我们不能继续这种不断增加和消耗性地使用我们有限的自然资源。然而,好消息是,金属原则上是无限可回收的,它们的回收只需要初级金属生产所需能源的一小部分。从1908年到2007年,我们生产了833吨铝,506吨铜和33吨钢。据估计,超过50%的这种金属仍然存在于我们的社会中。这些金属库存将成为我们的能源“银行”,是满足我们未来需求的丰富资源。英国金属铸造业每年为英国经济增加26亿英镑,雇用3万人,每年生产11.4亿吨金属铸件,并巩固了英国制造业各个部门的竞争地位。然而,该行业面临着严峻的挑战,包括过去30年的“空心化”,能源和材料成本增加,环境法规收紧以及技术人才短缺。我们现在正在建立未来液态金属工程中心来应对这些挑战。中心的核心活动将以布鲁内尔为基础,得到我们在牛津、利兹、曼彻斯特和帝国理工学院学术发言人的互补专业知识的大力支持,并得到我们工业合作伙伴超过4000万英镑的投资。该中心的长期愿景是全金属循环,通过减少使用、再利用、再制造、闭环回收以及有效回收和精炼再生金属,实现再生金属的全循环(每年只增加有限的原生金属),满足全球对金属材料的需求。这代表着冶金科学、制造技术和工业格局的范式转变。该中心旨在为全金属流通奠定坚实的基础,最初以轻金属为例,然后从长远来看扩展到其他金属。我们认为金属材料的闭环回收是全球制造业面临的最大挑战和机遇,因此我们与工业合作伙伴共同创建了Hub的研究计划。我们将开展基础研究,提供以成核为中心的固化科学,以支持闭环回收;我们将开展应用研究,开发回收友好的高性能金属材料和可持续金属加工技术,以实现闭环回收;我们将开展全面的外联计划,以吸引潜在的利益相关者,以确保我们的研究产生尽可能广泛的影响;我们将设立一个液态金属工程博士培训中心,以培训未来的领导者,使他们能够实现闭环回收的长期效益。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fibre/matrix intermetallic phase formation in novel aluminium-basalt composites
- DOI:10.1016/j.matlet.2018.12.079
- 发表时间:2019-03
- 期刊:
- 影响因子:3
- 作者:O. Adole;N. Barekar;L. Anguilano;T. Minton;A. Novytskyi;B. Mckay
- 通讯作者:O. Adole;N. Barekar;L. Anguilano;T. Minton;A. Novytskyi;B. Mckay
Partitionless Solidification and Anomalous Triradiate Crystal Formation in Drop-Tube Processed Al-3.9 wt%Fe Alloys
- DOI:10.1016/j.mtcomm.2022.103274
- 发表时间:2022-02
- 期刊:
- 影响因子:3.8
- 作者:M. Abul;R. Cochrane;A. Mullis
- 通讯作者:M. Abul;R. Cochrane;A. Mullis
Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe
- DOI:10.1016/j.jmst.2021.05.085
- 发表时间:2022-03
- 期刊:
- 影响因子:10.9
- 作者:M. Abul;R. Cochrane;A. Mullis
- 通讯作者:M. Abul;R. Cochrane;A. Mullis
Improvement of Hydrogenation and Dehydrogenation Kinetics of As-Cast AZ91 Magnesium Alloy via Twin Parallel Channel Angular Extrusion Processing
- DOI:10.3390/cryst12101428
- 发表时间:2022-10
- 期刊:
- 影响因子:2.7
- 作者:M. Abdi;R. Ebrahimi;E. Bagherpour
- 通讯作者:M. Abdi;R. Ebrahimi;E. Bagherpour
The Influence of Heat Treatment on the Caustic Etching Behaviour of the Automotive AA6111 Alloy
热处理对汽车AA6111合金碱蚀行为的影响
- DOI:10.4236/jmmce.2016.46030
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Abouarkoub A
- 通讯作者:Abouarkoub A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Z Fan其他文献
Shear Enhanced Heterogeneous Nucleation during Solidification of Mg-Alloy
镁合金凝固过程中剪切增强的异质形核
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Z Fan - 通讯作者:
Z Fan
Microwave fields driven domain wall motions in antiferromagnetic nanowires
微波场驱动反铁磁纳米线中的畴壁运动
- DOI:
10.1088/1367-2630/aac68e - 发表时间:
2018-01 - 期刊:
- 影响因子:3.3
- 作者:
Z Y Chen;Z R Yan;Y L Zhang;M H Qin;Z Fan;X B Lu;X S Gao;J-M Liu - 通讯作者:
J-M Liu
High density Co 3 O 4 nanoparticles confined in a porous graphene nanomesh network driven by an electrochemical process: ultra-high capacity and rate ...
高密度 Co 3 O 4 纳米粒子被限制在由电化学过程驱动的多孔石墨烯纳米网网络中:超高容量和速率...
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
X Ma;Z Fan;C Xu;J Gao... - 通讯作者:
J Gao...
Motion-robust high-resolution 3D diffusion-weighted vessel wall imaging at 3T
- DOI:
10.1186/1532-429x-15-s1-w26 - 发表时间:
2013-01-30 - 期刊:
- 影响因子:
- 作者:
Y Xie;Z Fan;D Li - 通讯作者:
D Li
Reconstruction of maximum temperature on Zhegu Mountain, western Sichuan Plateau (China)
川西高原折古山最高气温重建(中国)
- DOI:
10.3354/cr01606 - 发表时间:
2020-07 - 期刊:
- 影响因子:1.1
- 作者:
M Keyimu;Z Li;Y Zhao;Y Dong;B Fu;Z Fan;X Wang - 通讯作者:
X Wang
Z Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Z Fan', 18)}}的其他基金
UKRI Interdisciplinary Centre for CircularMetal
UKRI 循环金属跨学科中心
- 批准号:
EP/V011804/1 - 财政年份:2021
- 资助金额:
$ 1340.79万 - 项目类别:
Research Grant
Lightweight Energy Absorbing Aluminium Structures for Transport (LEAAST)
运输用轻质吸能铝结构 (LEAAST)
- 批准号:
EP/M507696/1 - 财政年份:2015
- 资助金额:
$ 1340.79万 - 项目类别:
Research Grant
Brunel University - Equipment Account
布鲁内尔大学 - 设备帐户
- 批准号:
EP/L017466/1 - 财政年份:2014
- 资助金额:
$ 1340.79万 - 项目类别:
Research Grant
Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicle Structures - TARF-LCV
迈向经济实惠、闭环可回收的未来低碳车辆结构 - TARF-LCV
- 批准号:
EP/I038616/1 - 财政年份:2011
- 资助金额:
$ 1340.79万 - 项目类别:
Research Grant
EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering
EPSRC 液态金属工程创新制造中心
- 批准号:
EP/H026177/1 - 财政年份:2010
- 资助金额:
$ 1340.79万 - 项目类别:
Research Grant
Upcycling of Light Alloy by Rheoforming Scrap (ULARS)
通过流变成型废料升级回收轻合金 (ULARS)
- 批准号:
DT/E010334/1 - 财政年份:2007
- 资助金额:
$ 1340.79万 - 项目类别:
Research Grant
Processing of Wrought Magnesium Alloys by a Rheoforming Approach
通过流变成型方法加工变形镁合金
- 批准号:
EP/D050839/1 - 财政年份:2006
- 资助金额:
$ 1340.79万 - 项目类别:
Research Grant
相似国自然基金
研究和探索一维范德华材料中的Luttinger liquid物理和摩尔超晶格物理
- 批准号:12174335
- 批准年份:2021
- 资助金额:62 万元
- 项目类别:面上项目
相似海外基金
CAREER: Manufacturing of Solid Particle-Liquid Metal Mixtures for Soft Robotics and Stretchable Electronics
职业:制造用于软机器人和可拉伸电子产品的固体颗粒-液体金属混合物
- 批准号:
2339780 - 财政年份:2024
- 资助金额:
$ 1340.79万 - 项目类别:
Standard Grant
Developing Room-Temperature Liquid Metal Batteries for Safe Energy Storage
开发用于安全储能的室温液态金属电池
- 批准号:
DE240100159 - 财政年份:2024
- 资助金额:
$ 1340.79万 - 项目类别:
Discovery Early Career Researcher Award
Liquid metal solvents for high entropy and atomically configured systems
用于高熵和原子配置系统的液态金属溶剂
- 批准号:
DP240101086 - 财政年份:2024
- 资助金额:
$ 1340.79万 - 项目类别:
Discovery Projects
Liquid Metal Interfaces – A Novel Platform for Catalysis
液态金属界面 — 新型催化平台
- 批准号:
DP240101215 - 财政年份:2024
- 资助金额:
$ 1340.79万 - 项目类别:
Discovery Projects
Liquid metal composite tactile sensor
液态金属复合触觉传感器
- 批准号:
DP230100823 - 财政年份:2023
- 资助金额:
$ 1340.79万 - 项目类别:
Discovery Projects
Establishment of Partial Liquid Metal Dealloying for New Nanoporous Alloy Synthesis by Thermodynamic Control of Solid-Liquid Phase Equilibrium
固液相平衡热力学控制部分液态金属脱合金合成新型纳米多孔合金的建立
- 批准号:
23H01705 - 财政年份:2023
- 资助金额:
$ 1340.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: Plasmonic Sensing in Liquid with Metal-Insulator-Metal Nanosensors Embedded in Soft Matrices
EAGER:使用嵌入软基体中的金属-绝缘体-金属纳米传感器在液体中进行等离子体传感
- 批准号:
2332818 - 财政年份:2023
- 资助金额:
$ 1340.79万 - 项目类别:
Standard Grant
The Magnetohydrodynamics of Liquid Metal Tornadoes (MAGNADO)
液态金属龙卷风的磁流体动力学 (MAGNADO)
- 批准号:
EP/X034402/1 - 财政年份:2023
- 资助金额:
$ 1340.79万 - 项目类别:
Research Grant
Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode
合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解
- 批准号:
2323474 - 财政年份:2023
- 资助金额:
$ 1340.79万 - 项目类别:
Standard Grant
Chemical Imaging of Metal Surfaces at the Solid-Liquid Interface: Effects of Grain Structure on Electrocatalytic Reactions
固液界面金属表面的化学成像:晶粒结构对电催化反应的影响
- 批准号:
2246583 - 财政年份:2023
- 资助金额:
$ 1340.79万 - 项目类别:
Standard Grant














{{item.name}}会员




