Ultrafast Spectroscopy of Advanced Materials at the University of Warwick

华威大学先进材料超快光谱学

基本信息

  • 批准号:
    EP/N010825/1
  • 负责人:
  • 金额:
    $ 26.05万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Structure-function relationships are commonplace, none more so than in biology: for example an enzyme binds to a substrate to catalyze a reaction. The added dimensionality of dynamics offers a more complete structure-dynamics-function (SDF) relationship, which provides unprecedented insight, at the molecular level, of why certain photochemical processes dominate over others. Once again in biology, this is best exemplified by human vision, which, at the molecular level, involves a structural change of the retinal chromophore, following absorption of light, in a few hundred femtoseconds (1 fs=1x10-15 s). Transferring the idea of SDF relationships into a range of advanced materials offers tremendous scope towards enhancing their functionality. It is with this idea in mind that we propose to develop a multi-user ultrafast spectroscopy facility, enabling one to study the consequences of light interacting with advanced materials on very short timescales and thus establishing rigorous SDF relationships. The research that will be facilitated is broadly grouped into four themes: Quantum Materials; Lasers and Medicine; Photostability; and Semiconductors. However, substantial cross-cutting links exist between the themes, and progress in one area will stimulate another - for example understanding the photostability of life's building blocks will lend support towards improving organic semiconductor photovoltaics - thus providing a sum that is greater than the individual parts. The proposed facility consists of five laser beamlines, which will enable users with different requirements to carry out ultrafast spectroscopy experiments independently and simultaneously at wavelengths across the electromagnetic spectrum, from terahertz (THz) to X-ray radiation, all in a single laser laboratory. This is a one-of-a-kind capability, and the vision of the investigators is to exploit this facility to foster cross-disciplinary research, enabling chemists, physicists, engineers and life scientists over the course of many years to work together to achieve major scientific breakthroughs. Importantly, the facility will be hosted in the new Materials and Analytical Sciences building at the University of Warwick, which was set up by the Departments of Chemistry and Physics specifically to promote such cross-disciplinary research. The broad user base identified includes 21 groups at the University of Warwick and over 10 national and international research teams, which the investigators hope to expand in years to come.The targeted research across these themes has the potential to make transformative contributions to a number of EPSRC grand challenges, including (i) Dial-a-molecule, (ii) Emergence and Physics Far From Equilibrium, (iii) Nanoscale Design of Functional Materials, and (iv) Understanding the Physics of Life. For instance, the high-field THz capability will provide access to extreme non-equilibrium physics in spintronic and multiferroic compounds, as well as permitting functional optoelectronic nanomaterials to be designed and characterised. Likewise, garnering a molecular level understanding of photoprotection of the building blocks of lignin will bring new insight into photodegradation processes in the naturally occurring lignin polymer, which may then inform those working on transforming biomass carbon content into bio-ethanol or chemical feedstock. Importantly, whilst the latter work contributes to Understanding the Physics of Life, it also has the potential to create a healthy synergy with the EPSRC's neighbouring Energy theme, specifically Bioenergy. Such synergies feature widely in the cross-disciplinary research proposed, which will inevitably lead to extensive economic and societal impact that will be accelerated by the pathways to impact proposed.
结构与功能的关系在生物学中是最常见的:例如,酶与底物结合以催化反应。增加的动力学维度提供了一个更完整的结构-动力学-功能(SDF)关系,这在分子水平上提供了前所未有的洞察力,为什么某些光化学过程占主导地位。同样在生物学中,这是最好的例子,人类的视觉,在分子水平上,涉及视网膜生色团的结构变化,在几百飞秒(1 fs= 1x 10 -15 s)的光吸收后。将SDF关系的概念转移到一系列先进的材料中,为增强其功能提供了巨大的空间。正是考虑到这一想法,我们建议开发一个多用户超快光谱设备,使人们能够研究光与先进材料在很短的时间尺度上相互作用的后果,从而建立严格的SDF关系。将促进的研究大致分为四个主题:量子材料;激光和医学;光稳定性;和半导体。然而,这些主题之间存在着实质性的交叉联系,一个领域的进展将刺激另一个领域的进展-例如,了解生命构建模块的光稳定性将有助于改善有机半导体光致发光-从而提供大于单个部分的总和。拟议的设施由五条激光束线组成,这将使具有不同要求的用户能够在从太赫兹(THz)到X射线辐射的电磁光谱波长上独立、同时地进行超快光谱实验,所有这些都在单个激光实验室中进行。这是一种独一无二的能力,研究人员的愿景是利用这一设施促进跨学科研究,使化学家,物理学家,工程师和生命科学家能够在多年的时间里共同努力实现重大科学突破。重要的是,该设施将设在沃里克大学的新材料和分析科学大楼内,该大楼由化学和物理系专门设立,以促进此类跨学科研究。确定的广泛用户群包括沃里克大学的21个小组和10多个国家和国际研究小组,研究人员希望在未来几年扩大这些研究小组。这些主题的有针对性的研究有可能为EPSRC的一些重大挑战做出变革性的贡献,包括(i)拨号分子,(ii)涌现和远离平衡的物理学,(iii)功能材料的纳米级设计,(iv)理解生命的物理学。例如,高场太赫兹能力将提供自旋电子和多铁性化合物中的极端非平衡物理学,并允许设计和表征功能性光电纳米材料。同样,获得对木质素结构单元的光保护的分子水平的理解将为天然存在的木质素聚合物中的光降解过程带来新的见解,然后可以为那些致力于将生物质碳含量转化为生物乙醇或化学原料的人提供信息。重要的是,虽然后者的工作有助于理解生命的物理学,但它也有可能与EPSRC的相邻能源主题,特别是生物能源,产生健康的协同作用。这种协同效应在拟议的跨学科研究中广泛存在,这将不可避免地带来广泛的经济和社会影响,而拟议的影响途径将加速这种影响。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gas-Solution Phase Transient Absorption Study of the Plant Sunscreen Derivative Methyl Sinapate
  • DOI:
    10.1002/cptc.201800060
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Baker, Lewis A.;Staniforth, Michael;Stavros, Vasilios G.
  • 通讯作者:
    Stavros, Vasilios G.
Unravelling the Photoprotective Mechanisms of Nature-Inspired Ultraviolet Filters Using Ultrafast Spectroscopy.
  • DOI:
    10.3390/molecules25173945
  • 发表时间:
    2020-08-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abiola TT;Whittock AL;Stavros VG
  • 通讯作者:
    Stavros VG
Giant Negative Terahertz Photoconductivity in Controllably Doped Carbon Nanotube Networks
  • DOI:
    10.1021/acsphotonics.9b00138
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Burdanova, Maria G.;Tsapenko, Alexey P.;Lloyd-Hughes, James
  • 通讯作者:
    Lloyd-Hughes, James
Unravelling the Photoprotection Properties of Garden Cress Sprout Extract.
  • DOI:
    10.3390/molecules26247631
  • 发表时间:
    2021-12-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abiola TT;Auckloo N;Woolley JM;Corre C;Poigny S;Stavros VG
  • 通讯作者:
    Stavros VG
Conservation of ultrafast photoprotective mechanisms with increasing molecular complexity in sinapoyl malate derivatives.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Lloyd-Hughes其他文献

A Review of the Terahertz Conductivity of Bulk and Nano-Materials
A Tutorial on THz Pulse Analysis: Accurate Retrieval of Pulse Arrival Times, Spectral Energy Density and Absolute Spectral Phase

James Lloyd-Hughes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Lloyd-Hughes', 18)}}的其他基金

Ultrafast dynamical properties of multifunctional materials
多功能材料的超快动力学特性
  • 批准号:
    EP/H003444/2
  • 财政年份:
    2013
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Fellowship
Ultrafast dynamical properties of multifunctional materials
多功能材料的超快动力学特性
  • 批准号:
    EP/H003444/1
  • 财政年份:
    2009
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Fellowship

相似海外基金

Advanced Raman Spectroscopy for Exhaled Breath Analysis for Lung Cancer Detection
用于肺癌检测的呼出气体分析的先进拉曼光谱
  • 批准号:
    494958
  • 财政年份:
    2023
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Operating Grants
Verification of anomalous spin-dependent electron correlation of half metal using advanced photoemission spectroscopy
使用先进的光电子能谱验证半金属的反常自旋相关电子相关性
  • 批准号:
    23H01125
  • 财政年份:
    2023
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Advanced fluorescence spectroscopy to unravel functional oligomerization of a newly discovered Ca2+ channel and its role in heart failure.
先进的荧光光谱揭示了新发现的 Ca2 通道的功能性寡聚及其在心力衰竭中的作用。
  • 批准号:
    2885854
  • 财政年份:
    2023
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Studentship
Revealing Particle Acceleration Mechanisms by Magnetic Energy Release with Advanced Hard X-ray Solar Imaging Spectroscopy
利用先进的硬 X 射线太阳成像光谱揭示磁能释放的粒子加速机制
  • 批准号:
    22KJ0873
  • 财政年份:
    2023
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Strain-typing of Alzheimer's amyloid using advanced fluorescence spectroscopy
使用先进的荧光光谱法对阿尔茨海默病淀粉样蛋白进行菌株分型
  • 批准号:
    472130
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Fellowship Programs
Advanced X-ray Spectroscopy for Biological Chemistry
用于生物化学的先进 X 射线光谱
  • 批准号:
    RGPIN-2019-05351
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Discovery Grants Program - Individual
MRI: Development of Ultra-Broadband High-Power Frequency Comb Light Source for Advanced Spectroscopy and Imaging
MRI:开发用于先进光谱和成像的超宽带高功率频率梳光源
  • 批准号:
    2216021
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Standard Grant
Deciphering Reaction Mechanisms of Biomass Upgrading over Zeolitic Materials via Advanced Nuclear Magnetic Resonance (NMR) spectroscopy
通过先进核磁共振 (NMR) 光谱破译沸石材料生物质升级的反应机制
  • 批准号:
    2787214
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Studentship
Dynamic nuclear polarisation-enhanced NMR spectroscopy for advanced materials understanding
动态核极化增强核磁共振波谱有助于理解先进材料
  • 批准号:
    2749035
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Studentship
Application of novel Raman spectroscopy device and advanced data analytics to optimise viral vector production and design
应用新型拉曼光谱设备和先进的数据分析来优化病毒载体的生产和设计
  • 批准号:
    2827616
  • 财政年份:
    2022
  • 资助金额:
    $ 26.05万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了