MRI: Development of Ultra-Broadband High-Power Frequency Comb Light Source for Advanced Spectroscopy and Imaging

MRI:开发用于先进光谱和成像的超宽带高功率频率梳光源

基本信息

  • 批准号:
    2216021
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

General Audience Abstract:With support from the Physics Division, three programs in the Chemistry Division (CRIF, CMI, CSDM-A), the Astronomy Division, the Division of Materials Research, and the Office of Integrative Activities, Professors Allison and Liu at Stony Brook University will develop a new laser-based light source spanning a wide swath of the electromagnetic spectrum. The research will advance the state of the art in frequency comb technology and enable a variety of experiments involving 10 principal investigators (PIs) at Stony Brook along with a regional network of PIs from other nearby institutions. A frequency comb is a synthesizer for light waves, with which the user can control the electric field of light waves with the same precision routinely accomplished for radio frequency and microwave fields using the electronic technology that is the backbone of modern life. This control over light waves can enable myriad applications, however many applications of frequency combs have been limited by the available power and spectral coverage from currently available light sources. The new light source to be developed at Stony Brook will address this challenge by using high-power fiber lasers and nonlinear optics to generate frequency combs with unprecedented brightness and spectral coverage. With frequency combs spanning from the far-infrared to the soft x-ray, it is planned to cover more than 17 octaves (or about 2 and a half pianos’ worth) of frequency space. After development, the light source will be applied to experiments in four targeted areas: 1) nanometer resolved characterization of quantum materials and devices, 2) time-resolved imaging of electron motion in molecules and quantum materials, 3) ultrasensitive gas-phase molecular spectroscopy for both fundamental studies and analytical chemistry, and 4) quantum information science using atomic, molecular, and optical physics (AMO) platforms. It is also expected that the research will have a much broader impact than these activities at Stony Brook via the dissemination of detailed construction plans for the light source to the broader community, the training of students and postdocs in advanced optical methods, the development of new pedagogical experiments for undergraduate education, and potential future integration of the developed frequency comb technology into the NSF NeXUS, NSF’s new flagship laser-based user facility for ultrafast science.Technical Audience Abstract:PIs Allison and Liu will develop a new frequency comb light source at Stony Brook University with output spanning a wide swath of the electromagnetic spectrum, from the THz region (E 0.001 eV) all the way to the soft x-ray (E 200 eV). Built with a robust and reliable fiber-laser backbone, this light source will provide phase-coherent femtosecond-duration light pulses at MHz repetition rates that will be used in a variety of experiments. The light source development work proposed here will quantitatively advance the state of the art in frequency combs, and ultrafast optics in general, in a number of important ways. For one example, the PIs will produce the brightest source of broadband coherent THz and far-infrared radiation, orders of magnitude brighter than dedicated infrared/THz beamlines at synchrotron light sources. Similar to previous advances in light source technology, these developments will have a large qualitative impact on a wide range of science, with many applications both foreseen and unforeseen. At Stony Brook, the light source will specifically impact four activities, undertaken by 13 additional major users in collaboration with the PIs: 1) scanning near-field optical microscopy (SNOM) of quantum materials, 2) time- and angle-resolved photoemission (tr-ARPES) of quantum materials and molecular systems, 3) high-resolution and ultrafast spectroscopy of gas-phase molecules, and 4) laser stabilization in atomic, molecular, and optical (AMO) physics labs. Technology transfer to the broader community will be accomplished via detailed “how-to” papers, with complete parts lists, that enable others to build their own combs, and also via collaboration with the NSF NeXUS facility, NSF’s new flagship user facility for ultrafast spectroscopy. At Stony Brook, the new frequency comb system will also enable new experiments in the Laser Teaching Center, a unique facility at Stony Brook with full-time staff dedicated to education, outreach, and training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
普通观众摘要:在物理部门的支持下,化学部的三个计划(CRIF,CMI,CSDM-A),天文学部,材料研究部以及综合活动办公室,Stony Brook University教授Allison和Liu将开发一个新的基于激光的光源,该光源范围广泛。这项研究将推进频率梳理技术的最新技术,并使各种实验涉及Stony Brook的10名主要研究人员(PIS),以及来自其他近乎机构的区域PI网络。频率梳子是光波的合成器,用户可以使用与现代生活的骨干的电子技术相同的精确度来控制光波的电场。对光波的控制可以实现无数的应用,但是频率梳子的许多应用都受到当前可用光源的可用功率和光谱覆盖的限制。 Stony Brook要开发的新光源将通过使用高功率光纤激光器和非线性光学元件来解决这一挑战,从而生成具有前所未有的亮度和光谱覆盖的频率梳子。随着频率梳子从远红外到软X射线,它计划覆盖频率空间的17多个八度音(或大约2个半钢琴的价值)。开发后,光源将应用于四个目标区域的实验:1)纳米量子材料和设备的表征,2)分子和量子材料中电子运动的时间分辨成像,3)超敏感性的气相分子分子谱图在基础研究和分析化学中,以及使用量子量的分析,以及使用量子的分析,以及使用量子分析的分析,以及分析的分析,分子分子。 It is also expected that the research will have a much broader impact than these activities at Stony Brook via the dissemination of detailed construction plans for the light source to the broader community, the training of students and postdocs in advanced optical methods, the development of new pedagogical experiments for undergraduate education, and potential future integration of the developed frequency comb technology into the NSF NeXUS, NSF’s new flagship laser-based user facility for ultrafast Science.Technical受众摘要:PIS Allison和Liu将在Stony Brook University开发新的频率梳子光源,其产出跨越了从THZ地区(E 0.001 eV)到软X射线(E 200 EV)的广泛电子频谱。该光源以坚固且可靠的纤维激光主链构建,将以MHz的重复速率提供相相关的飞秒持续光脉冲,这些脉冲将用于各种实验。此处提出的光源开发工作将以频率梳子进行定量提高最新技术,并以多种重要方式进行超快光学元件。例如,PI将产生最亮的宽带相干THZ和远红外辐射,比同步子光源处的专用红外/THZ Beablines更明亮的数量级。与以前的光源技术进步相似,这些发展将对广泛的科学产生重大的定性影响,许多应用程序都可以预见和不可预见。 At Stony Brook, the light source will specifically impact four activities, undertaken by 13 additional major users in collaboration with the PIs: 1) scanning near-field optical microscopy (SNOM) of quantum materials, 2) time- and angle-resolved photoemission (tr-ARPES) of quantum materials and molecular systems, 3) high-resolution and ultrafast spectroscopy of gas-phase molecules, and 4) laser stabilization in原子,分子和光学(AMO)物理实验室。技术转移到更广泛的社区将通过详细的“操作方法”论文以及完整的零件列表来完成,这使其他人能够构建自己的梳子,并通过与NSF NEXUS设施的合作,NSF NSF NSF NEXUS设施,NSF的超快光谱型新型旗舰用户设施。在Stony Brook,新的频率梳状系统还将在激光教学中心进行新的实验,这是Stony Brook的独特设施,拥有专门从事教育,外展和培训的全职员工。该奖项反映了NSF的法定任务,并被认为是通过使用基金会的知识和更广泛影响的评估来审查Criteria的评估来通过评估来获得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Allison其他文献

TRADITIONAL CV RISK FACTORS VERSUS FITNESS AND STRESS TEST FINDINGS: WHICH BETTER PREDICTS MORTALITY?
  • DOI:
    10.1016/s0735-1097(18)32336-2
  • 发表时间:
    2018-03-10
  • 期刊:
  • 影响因子:
  • 作者:
    Amanda Bonikowske;Francisco Lopez-Jimenez;Nora Sydo;Thomas Allison
  • 通讯作者:
    Thomas Allison
BASELINE CHARACTERISTICS AND STRESS TEST FINDINGS AS PREDICTORS OF CARDIOVASCULAR AND CANCER MORTALITY
  • DOI:
    10.1016/s0735-1097(19)32270-3
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Yazan Assaf;Sonia Fortin-Gamero;Maria Irene Barillas-Lara;Nasir Hussain;Amanda Bonikowske;Thomas Allison
  • 通讯作者:
    Thomas Allison
RESTORATION SINUS RHYTHM IN PATIENTS WITH ATRIAL FIBRILLATION IMPROVES PROGNOSTIC INDICATORS DURING CARDIOPULMONARY EXERCISE TESTING
  • DOI:
    10.1016/s0735-1097(14)60364-8
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephanie Joppa;Thomas Allison;Peter Brady
  • 通讯作者:
    Peter Brady
906-61 Acoustic Quantification in the Infarcted Ventricle: Comparison with Electron Beam Computed Tomography
  • DOI:
    10.1016/0735-1097(95)91686-r
  • 发表时间:
    1995-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jean Buithieu;Thomas Behrenbeck;Thomas Allison;Thomas Gerber;Judd E. Reed;David A. Foley;John A. Rumberger;A. Jamil Tajik;James B. Seward
  • 通讯作者:
    James B. Seward
DIGITAL HEALTH INTERVENTION USAGE IMPROVES WEIGHT LOSS IN A DOSE-DEPENDENT FASHION
  • DOI:
    10.1016/s0735-1097(17)35055-6
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Jay Widmer;Thomas Allison;Francisco Lopez-Jimenez;Lilach Lerman;Amir Lerman
  • 通讯作者:
    Amir Lerman

Thomas Allison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Allison', 18)}}的其他基金

Collaborative Research: Understanding Ultrafast Observables
合作研究:理解超快可观测值
  • 批准号:
    2102319
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Widely Tunable Cavity-Enhanced Ultrafast Spectroscopy and the Dynamics of Hydrogen Bond Networks
宽可调腔增强超快光谱和氢键网络动力学
  • 批准号:
    1708743
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Cavity Enhanced Ultrafast Transient Absorption Spectroscopy
腔增强超快瞬态吸收光谱
  • 批准号:
    1404296
  • 财政年份:
    2014
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
  • 批准号:
    32360143
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
  • 批准号:
    32371366
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
企业层面视角下自由贸易协定条款深度对出口高质量发展的影响:模型拓展与量化分析
  • 批准号:
    72363013
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
新型城镇化与区域协调发展的机制与治理体系研究
  • 批准号:
    72334006
  • 批准年份:
    2023
  • 资助金额:
    167 万元
  • 项目类别:
    重点项目
亦正亦邪Sirt6:Sirt6调控谷氨酰胺代谢促进肝内胆管癌发生发展的分子机制研究
  • 批准号:
    82372667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Acquisition of a Bruker 11.7T/16cm Preclinical Scanner for Novel MRI/MRSI Studies
采购布鲁克 11.7T/16cm 临床前扫描仪用于新型 MRI/MRSI 研究
  • 批准号:
    10630511
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
  • 批准号:
    10810913
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
A computational approach combining 4D Flow and CFD for improved determination of cerebral hemodynamics
结合 4D Flow 和 CFD 的计算方法可改进脑血流动力学测定
  • 批准号:
    10581283
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Neural Circuit-Specific Mechanisms of Ketamine's Effect on Anhedonia and Anxiety in Depression Using Ultra-High Field 7-Tesla MRI
使用超高场 7 特斯拉 MRI 研究氯胺酮对抑郁症快感缺乏和焦虑影响的神经回路特异性机制
  • 批准号:
    10713827
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
7T MRI as a potential tool for detection of pathology in Alzheimer's disease
7T MRI 作为检测阿尔茨海默病病理的潜在工具
  • 批准号:
    10349883
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了