Image guided surgery through spatio-temporal signal amplification
通过时空信号放大进行图像引导手术
基本信息
- 批准号:EP/N013220/1
- 负责人:
- 金额:$ 12.52万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Through advances in instrumentation and high resolution digital video, surgical techniques are increasingly becoming more minimally invasive. Reducing the access trauma of surgery has many advantages for the patient such as reduced hospitalisation, scarring, co-morbidity and post-operative pain. However, limiting the surgeon's access to the surgical site inevitably increases the complexity of operations. Clinically, it is crucial to enhance visualisation during minimally invasive surgery and in particular to enable the surgeon to see structures underneath the exposed organ surface and to observe the functional characteristics of tissues. The availability of this information in real-time during surgery can assist the surgeon to prevent damage to critical anatomical structures and to preserve the viability of healthy tissues. Information about the location of blood vessels is actually inherently embedded in the endoscopic video signal from minimally invasive surgery in the form of motion. This can be observed easily when the vessel is large and near the tissue's surface. However, when the vessel is small and embedded within the tissue, the motion may be very subtle and not naturally visible by the naked eye because the human visual system is tuned to specific frequencies and motion amplitudes. Similar variations are present in the radiometric channels of endoscopic video, where colour fluctuations are surrogate measures of changes in tissue perfusion linked to the cardiac cycle. These subtle spatio-temporal video variations can be computationally detected and measured which constitutes the focus of the proposed project. The difficulty in exposing subtle variations in endoscopic video is that the surgical site is highly deformable and dynamic, which typically obscures the location of sub-surface vessels. To compensate for large scene dynamics, we will use a combination of registration and tracking techniques that temporally align specific regions of tissue. Once small variations have been identified, observations from different angles acquired either by a stereo endoscope or by a moving device will facilitate the localisation of vessels under the tissue. Mathematically, the theory of sparsity regularization and non-smooth regularisation will be exploited to solve for the vessel position leveraging existing research in tomography imaging e.g. using non-convex penalties and adaptive algorithms.The computational techniques to be developed, in the form of inverse problems for recovering and localising the source of subtle motion or colour variations, have wide applicability to many image and vision computing problems. In particular, applications where large dynamic effects need to be considered and removed apriori and where the problem is under determined due to the complexity of the structures under investigation.
随着器械和高分辨率数字视频的进步,外科技术正变得越来越微创。减少手术的入路创伤对患者有许多好处,如减少住院、减少疤痕、减少并发症和术后疼痛。然而,限制外科医生进入手术现场不可避免地增加了手术的复杂性。在临床上,在微创手术中加强可视化是至关重要的,尤其是使外科医生能够看到暴露的器官表面下的结构和观察组织的功能特征。在手术过程中实时获得这些信息可以帮助外科医生防止对关键解剖结构的损害,并保护健康组织的生存能力。有关血管位置的信息实际上以运动的形式嵌入到来自微创手术的内窥镜视频信号中。当血管较大且靠近组织表面时,很容易观察到这一点。然而,当血管很小并嵌入组织中时,运动可能非常微妙,肉眼无法自然看到,因为人类的视觉系统会调整到特定的频率和运动幅度。在内窥镜视频的辐射通道中也存在类似的变化,其中颜色波动是与心脏周期相关的组织灌注量变化的替代测量。这些细微的时空视频变化可以通过计算来检测和测量,这构成了拟议项目的重点。在内窥镜视频中曝光细微变化的困难在于手术部位高度变形和动态,这通常会模糊表面下血管的位置。为了补偿大场景动态,我们将使用配准和跟踪技术的组合,以在时间上对齐组织的特定区域。一旦识别出微小的变化,通过立体内窥镜或移动设备从不同角度获得的观察将有助于组织下血管的定位。在数学上,将利用稀疏正则化和非光滑正则化理论来利用断层成像中的现有研究来求解血管位置,例如使用非凸罚函数和自适应算法。将要开发的计算技术以反问题的形式来恢复和定位细微运动或颜色变化的来源,对许多图像和视觉计算问题具有广泛的适用性。特别是,需要事先考虑和消除大的动力效应的应用,以及由于所研究的结构的复杂性而无法确定问题的应用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery.
- DOI:10.1007/s11548-016-1393-4
- 发表时间:2016-06
- 期刊:
- 影响因子:3
- 作者:Du X;Allan M;Dore A;Ourselin S;Hawkes D;Kelly JD;Stoyanov D
- 通讯作者:Stoyanov D
HAPNet: hierarchically aggregated pyramid network for real-time stereo matching
- DOI:10.1080/21681163.2020.1835561
- 发表时间:2020-11-26
- 期刊:
- 影响因子:1.6
- 作者:Brandao, Patrick;Psychogyios, Dimitris;Janatka, Mirek
- 通讯作者:Janatka, Mirek
Refractive Structure-from-Motion Through a Flat Refractive Interface
- DOI:10.1109/iccv.2017.568
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:F. Chadebecq;F. Vasconcelos;G. Dwyer;Rene M. Lacher;S. Ourselin;Tom Kamiel Magda Vercauteren;D. Stoyanov-D.-S
- 通讯作者:F. Chadebecq;F. Vasconcelos;G. Dwyer;Rene M. Lacher;S. Ourselin;Tom Kamiel Magda Vercauteren;D. Stoyanov-D.-S
Robust Catheter and Guidewire Tracking Using B-Spline Tube Model and Pixel-Wise Posteriors
- DOI:10.1109/lra.2016.2517821
- 发表时间:2016-01-01
- 期刊:
- 影响因子:5.2
- 作者:Chang, Ping-Lin;Rolls, Alexander;Stoyanov, Danail
- 通讯作者:Stoyanov, Danail
Spectral Imaging Of Thermal Damage Induced During Microwave Ablation In The Liver.
肝脏微波消融过程中引起的热损伤的光谱成像。
- DOI:10.1109/embc.2018.8512901
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Clancy NT
- 通讯作者:Clancy NT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danail Stoyanov其他文献
Flexible scintillator autoradiography for tumor margin inspection using 18F-FDG
使用 18F-FDG 进行肿瘤边缘检查的柔性闪烁体放射自显影
- DOI:
10.1117/12.2289693 - 发表时间:
2018 - 期刊:
- 影响因子:14.9
- 作者:
T. Mertzanidou;Kunal Vyas;Maarten Grootendorst;D. Tuch;Danail Stoyanov;S. Arridge;Sven Macholl - 通讯作者:
Sven Macholl
A spherical joint robotic end-effector for the Expanded Endoscopic Endonasal Approach
用于扩展内窥镜鼻内入路的球形关节机器人末端执行器
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
E. Dimitrakakis;G. Dwyer;L. Lindenroth;Petros Giataganas;N. Dorward;Hani J. Marcus;Danail Stoyanov - 通讯作者:
Danail Stoyanov
Image quality evaluation of imaging skins, a novel stretchable X-ray detector for intraoperative tumour imaging
- DOI:
10.1038/s41598-025-96768-z - 发表时间:
2025-04-11 - 期刊:
- 影响因子:3.900
- 作者:
Solène Dietsch;Harry Allan;Lukas Lindenroth;Robert Moss;Agostino Stilli;Danail Stoyanov - 通讯作者:
Danail Stoyanov
The Application of Machine Perfusion as an Enhanced ex vivo Model for Optical Imaging
机器灌注作为光学成像增强离体模型的应用
- DOI:
10.1109/embc40787.2023.10341091 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Katie Doyle;Morenike Magbagbeola;Z. Rai;Dale Waterhouse;L. Lindenroth;G. Dwyer;Amir Gander;A. Stilli;Brian R. Davidson;Danail Stoyanov - 通讯作者:
Danail Stoyanov
Minimum resolution requirements of digital pathology images for accurate classification
用于准确分类的数字病理图像的最低分辨率要求
- DOI:
10.1016/j.media.2023.102891 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:11.800
- 作者:
Lydia Neary-Zajiczek;Linas Beresna;Benjamin Razavi;Vijay Pawar;Michael Shaw;Danail Stoyanov - 通讯作者:
Danail Stoyanov
Danail Stoyanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danail Stoyanov', 18)}}的其他基金
Self-guided Microrobotics for Automated Brain Dissection
用于自动脑解剖的自引导微型机器人
- 批准号:
ES/T011866/1 - 财政年份:2020
- 资助金额:
$ 12.52万 - 项目类别:
Research Grant
Multispectral polarization-resolved endoscopy and vision for intraoperative imaging of tissue microstructure and function
多光谱偏振分辨内窥镜和视觉用于组织微观结构和功能的术中成像
- 批准号:
EP/R004080/1 - 财政年份:2017
- 资助金额:
$ 12.52万 - 项目类别:
Research Grant
相似海外基金
Development of contrast agents to facilitate image-guided surgery
开发造影剂以促进图像引导手术
- 批准号:
10810184 - 财政年份:2023
- 资助金额:
$ 12.52万 - 项目类别:
Development of multinuclear MRI for image guided therapy of glioma patients
开发用于神经胶质瘤患者图像引导治疗的多核 MRI
- 批准号:
10655918 - 财政年份:2023
- 资助金额:
$ 12.52万 - 项目类别:
Molecular Phenotyping and Image-Guidance for Surgical Treatment of High-Risk Prostate Cancer Using Ultrasmall Silica Nanoparticles
使用超小二氧化硅纳米粒子进行高风险前列腺癌手术治疗的分子表型分析和图像引导
- 批准号:
10908927 - 财政年份:2023
- 资助金额:
$ 12.52万 - 项目类别:
Image-guided oxygen enhanced photodynamic therapy with multi-functional nanodroplets to improve head and neck cancer treatment outcomes
使用多功能纳米液滴进行图像引导氧气增强光动力疗法可改善头颈癌的治疗效果
- 批准号:
10521642 - 财政年份:2022
- 资助金额:
$ 12.52万 - 项目类别:
In vivo evaluation of a CT-compatible retractor for image guided trans-oral surgery
用于图像引导经口腔手术的 CT 兼容牵开器的体内评估
- 批准号:
10575098 - 财政年份:2022
- 资助金额:
$ 12.52万 - 项目类别:
Commercialization of ALM-488 for Highlighting Nerves During Image Guided Surgeries
用于在图像引导手术期间突出神经的 ALM-488 的商业化
- 批准号:
10701737 - 财政年份:2022
- 资助金额:
$ 12.52万 - 项目类别:
Prognostic and Predictive Digital Tissue Image Assay for Prostate Cancer
前列腺癌的预后和预测数字组织图像分析
- 批准号:
10697304 - 财政年份:2022
- 资助金额:
$ 12.52万 - 项目类别:
Open Software Platform for Data-Driven Image-Guided Robotic Interventions
用于数据驱动图像引导机器人干预的开放软件平台
- 批准号:
10608711 - 财政年份:2022
- 资助金额:
$ 12.52万 - 项目类别:
Computational methods for planning of image-guided surgery methods
图像引导手术方法规划的计算方法
- 批准号:
RGPIN-2019-05063 - 财政年份:2022
- 资助金额:
$ 12.52万 - 项目类别:
Discovery Grants Program - Individual