Open Software Platform for Data-Driven Image-Guided Robotic Interventions
用于数据驱动图像引导机器人干预的开放软件平台
基本信息
- 批准号:10608711
- 负责人:
- 金额:$ 28.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdministrative SupplementAlgorithmsAnatomic ModelsAnatomyAreaCathetersClinicalCommunicationCommunitiesComplicationComputer softwareDataDecision MakingDevelopmentDiagnosisDiseaseDocumentationEngineeringEventExcisionFundingGoalsGraphImageInterventionLearningLesionLinkMagnetic Resonance ImagingMaintenanceMechanicsMedialMedicalMedical ImagingMedical RecordsModelingMotionNamesNeedlesOperating SystemOperative Surgical ProceduresOutcomeParticipantPatientsPhysiciansPhysiologicalPlug-inPositron-Emission TomographyProceduresPropertyProstateQuality ControlReportingResearchResearch PersonnelResolutionResourcesRobotRoboticsSource CodeSpeedStagingStudentsSystemTechnologyTestingTissuesTrainingUncertaintyWorkbasebench-to-bedside translationdata toolsexperienceimage guidedimage processingimaging platformimprovedin vivointerestmultiparametric imagingopen sourceparent grantparent projectprototyperepositoryrobot assistancesensorsoftware developmentsoftware systemssurgery outcometechnology/techniquetooltumorultrasound
项目摘要
Project Summary/Abstract
More than 232 million surgeries and interventions are performed each year worldwide, and 51.4 million in the
US. Despite improvements in surgical technology and techniques, complication rates of up to 20% are reported.
Image guidance is a key factor in improving surgical outcomes and reducing complications. While imaging is
routinely used for diagnosis and staging prior to surgery, the majority of the millions of surgical and interventional
cases are still performed without a direct link to pre-operative images, instead relying on the operating physician’s
decisions based on experience. Image-guided robotic interventions (IGRIs) are being investigated to address
those challenges. The underlying hypothesis is that the combined image-guidance and robot-assistance
enhance the physician’s ability to see and physically access the lesion with minimal invasion resulting in a better
clinical outcome. However, usage of image information in IGRI systems merely follow current conventional non-
robotic procedures; those robots are controlled simply based on the geometric information obtained from the
image, which leads to a discrepancy between the plan and the actual physical space in vivo due to various
uncertainties, including patient motion, heterogenous tissue properties, and communication latencies between
system components (e.g., sensors, robot hardware, and software). As a result, IGRI has not shown a clear
advantage over conventional non-robotic procedures in terms of clinical outcome. The growing number of IGRI
applications and the recognition of the real-world challenge led to a shift of research interest from a hardware-
centric approach, which pursues mechanical precision, to a “data-driven” approach, where the treatment is
modeled based on data obtained from imaging scanners, sensors, and medical records for personalized planning
and control for better clinical outcomes. The data-driven approach requires sizable engineering resources
because of the wide range of software components involved. Particularly, integration of software components
developed in different fields, i.e., robotics and medical image computing, is challenging due to the lack of robust
software platforms that are compatible with every component used. To address this challenge, we will integrate
popular medical image computing and robotics software packages, namely Robot Operating System version 2
(ROS2) and 3D Slicer into a single platform. This new platform, called SlicerROS, will be distributed as a plug-
in for 3D Slicer. SlicerROS will allow incorporating state-of-the-art robotics and medical image computing tools,
which are developed and validated in the robotics and medical image computing communities, into a single IGRI
system. We will work on the following aims: (Aim 1) Extend 3D Slicer/ROS integration to achieve seamless
integration of medial image computing and robotics tools for data-driven IGRI; (Aim 2) Disseminate SlicerROS
in the medical image computing and robotics communities to build an active user/developer community for
sustainable open-source software development and maintenance.
项目摘要/摘要
全球每年进行超过2.32亿次手术和干预措施,其中5,140万
我们。尽管手术技术和技术有所改善,但报告的并发症发生率最高为20%。
图像引导是改善手术结果和减少并发症的关键因素。而成像是
在手术前通常用于诊断和分期,大多数手术和介入中的大多数
案件仍然是在没有与术前图像的直接链接的情况下执行的,而是依靠操作医师的
基于经验的决定。正在研究图像引导的机器人干预措施(IGRIS)以解决
这些挑战。基本的假设是组合图像指标和机器人辅助
增强物理性观察和物理访问病变,并以最小的侵袭,从而获得更好的状态
临床结果。但是,IGRI系统中图像信息的使用仅遵循当前的常规非 -
机器人程序;这些机器人仅根据从
图像,由于各种
不确定性,包括患者运动,异源组织特性和之间的通讯潜伏期
系统组件(例如,传感器,机器人硬件和软件)。结果,IGRI尚未显示出明确的
就临床结局而言,优于常规的非无骨手术的优势。 IGRI的数量越来越多
应用程序和对现实世界挑战的认识导致研究兴趣从硬件转移
以机械精度为基础的方法,采用了一种“数据驱动”方法,该方法是治疗
根据从成像扫描仪,传感器和医疗记录获得的个性化计划的数据建模
并控制更好的临床结果。数据驱动的方法需要相当大的工程资源
由于涉及的软件组件范围很广。特别是软件组件的集成
由于缺乏强大的功能,在不同领域(即机器人技术和医学图像计算)开发
与所使用的每个组件兼容的软件平台。为了应对这一挑战,我们将集成
流行的医疗图像计算和机器人软件包,即机器人操作系统版本2
(ROS2)和3D切片机进入一个平台。这个称为Slicerros的新平台将作为插件分发
用于3D切片机。 Slicerros将允许合并最先进的机器人技术和医学图像计算工具,
在机器人技术和医学图像计算社区中已开发和验证的,将其分为一个IGRI
系统。我们将以以下目的进行工作:(目标1)扩展3D切片机/ROS集成以实现无缝
用于数据驱动的IGRI的媒体图像计算和机器人技术工具的集成; (AIM 2)传播Slicerros
在医学图像计算和机器人技术社区中,建立了一个活跃的用户/开发人员社区
可持续的开源软件开发和维护。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Fuge其他文献
Mark Fuge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Fuge', 18)}}的其他基金
Patient specific 3D printed tissue engineered vascular graft for aortic reconstruction designed by artificial intelligence algorithm.
由人工智能算法设计的用于主动脉重建的患者特异性 3D 打印组织工程血管移植物。
- 批准号:
10024070 - 财政年份:2018
- 资助金额:
$ 28.72万 - 项目类别:
Patient specific 3D printed tissue engineered vascular graft for aortic reconstruction designed by artificial intelligence algorithm.
由人工智能算法设计的用于主动脉重建的患者特异性 3D 打印组织工程血管移植物。
- 批准号:
10162386 - 财政年份:2018
- 资助金额:
$ 28.72万 - 项目类别:
OpenIGTLink: a network communication interface for closed-loop image-guided interventions
OpenIGTLink:用于闭环图像引导干预的网络通信接口
- 批准号:
10390378 - 财政年份:2015
- 资助金额:
$ 28.72万 - 项目类别:
OpenIGTLink: a network communication interface for closed-loop image-guided interventions
OpenIGTLink:用于闭环图像引导干预的网络通信接口
- 批准号:
10211359 - 财政年份:2015
- 资助金额:
$ 28.72万 - 项目类别:
OpenIGTLink: a network communication interface for closed-loop image-guided interventions
OpenIGTLink:用于闭环图像引导干预的网络通信接口
- 批准号:
10561704 - 财政年份:2015
- 资助金额:
$ 28.72万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 28.72万 - 项目类别:
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
- 批准号:
10798646 - 财政年份:2023
- 资助金额:
$ 28.72万 - 项目类别:
Use of CTEP portfolio compounds to counteract phenotype conversion in GBM
使用 CTEP 组合化合物来抵消 GBM 中的表型转换
- 批准号:
10598714 - 财政年份:2022
- 资助金额:
$ 28.72万 - 项目类别:
Improved optical Monte Carlo simulation through standardization, robustness, and training
通过标准化、鲁棒性和训练改进光学蒙特卡罗模拟
- 批准号:
10584410 - 财政年份:2022
- 资助金额:
$ 28.72万 - 项目类别: