2-D materials as the next generation membranes in hydrogen generation and low temperature fuel cells.

二维材料作为制氢和低温燃料电池的下一代膜。

基本信息

  • 批准号:
    EP/N013670/1
  • 负责人:
  • 金额:
    $ 62.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Fuel cells have been promoted as a pollution free alternative for energy generation when converting hydrogen into electricity. There are several constraints which have limited the implementation of this technology and this proposal addresses all of the major problems.To make hydrogen requires energy and using conventional methods requires electricity to electrolyse water, if the electricity comes from fossil fuels then the problem is simply moved rather than solved. To use renewable energy requires electrolysers where the energy intermittently generated by the source (wind, solar, tidal etc) is converted into hydrogen at source by an on-site Polymer Electrolyte Membrane (PEM) Electrolyser. The problem with PEM electrolysers is that the membrane used needs to be thick to prevent hydrogen mixing with oxygen to form an explosive mixture but the thickness of the membrane reduces efficiency.Similar problems manifest themselves in fuel cells, the conversion of hydrogen back into electricity requires a PEM fuel cell, the membrane is the same as in the electrolyser and again needs to be thick to prevent fuel crossover but this again reduces efficiency. A third technology, the Direct Methanol Fuel Cell (DMFC) was developed to address the problems around hydrogen storage but again the membrane is the same and again thickness and fuel crossover constrain the efficacy of the membrane.In this work we intend to take the properties of the graphene and hexagonal boron nitride (hBN) which have been proven to allow protons to pass but prevent all other transport of materials and apply them to the three technologies discussed. The materials challenges around the manufacture of a defect free barrier membrane will be tackled with the added benefit of utilising the expensive platinum catalyst more efficiently.The potential benefit of this work is that hydrogen production will become more efficient and the cost of converting the fuel into electricity in a fuel cell will decrease as the overall cost of the fuel cell is reduced. This will make viable the use of 'green hydrogen' as an energy storage medium and enable the route to market for PEM fuel cells which are necessary to convert the hydrogen (and other fuels such as methanol) into electrical energy. Another potential benefit of this study is the complete replacement of the membrane material by a supported graphene or hBN. This will facilitate the reduction in volume of a fuel cell, as the fuel will no longer need to be humidified so there will be fewer components, which is important for mobile/portable applications.
燃料电池已经被推广为一种无污染的替代能源,可以将氢转化为电。有几个制约因素限制了这项技术的实施,本提案解决了所有主要问题。制造氢需要能源,使用传统方法需要电力来电解水,如果电力来自化石燃料,那么问题只是移动而不是解决。使用可再生能源需要电解槽,其中由来源(风能,太阳能,潮汐能等)间歇性产生的能量通过现场聚合物电解质膜(PEM)电解槽在源头转化为氢气。PEM电解槽的问题在于,所用的膜需要很厚,以防止氢与氧混合形成爆炸性混合物,但膜的厚度会降低效率。类似的问题也出现在燃料电池中,氢转化为电需要PEM燃料电池,膜和电解槽一样,需要很厚来防止燃料交叉,但这又降低了效率。第三种技术是直接甲醇燃料电池(DMFC),旨在解决氢储存的问题,但膜的厚度和燃料交叉限制了膜的效率。在这项工作中,我们打算利用石墨烯和六方氮化硼(hBN)的特性,它们已被证明允许质子通过,但阻止所有其他材料的传输,并将它们应用于所讨论的三种技术。制造无缺陷屏障膜的材料挑战将与更有效地利用昂贵的铂催化剂的额外好处一起解决。这项工作的潜在好处是,氢气生产将变得更有效率,燃料电池中将燃料转化为电力的成本将随着燃料电池总成本的降低而降低。这将使“绿色氢”作为一种能量储存介质的使用成为可能,并使质子交换膜燃料电池进入市场,这是将氢(和其他燃料,如甲醇)转化为电能所必需的。这项研究的另一个潜在好处是由支撑的石墨烯或hBN完全取代膜材料。这将有助于减少燃料电池的体积,因为燃料将不再需要加湿,因此将有更少的组件,这对于移动/便携式应用非常重要。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2D Crystals Significantly Enhance the Performance of a Working Fuel Cell
  • DOI:
    10.1002/aenm.201601216
  • 发表时间:
    2017-03-08
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Holmes, Stuart M.;Balakrishnan, Prabhuraj;Nair, Rahul R.
  • 通讯作者:
    Nair, Rahul R.
Synthesis of a high-temperature stable electrochemically exfoliated graphene
  • DOI:
    10.1016/j.carbon.2019.10.042
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Sharif, Farbod;Zeraati, Ali Shayesteh;Roberts, Edward P. L.
  • 通讯作者:
    Roberts, Edward P. L.
Single Layer 2D Crystals for Electrochemical Applications of Ion Exchange Membranes and Hydrogen Evolution Catalysts
  • DOI:
    10.1002/admi.201801838
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    M. Pérez-Page;Madhumita Sahoo;S. Holmes
  • 通讯作者:
    M. Pérez-Page;Madhumita Sahoo;S. Holmes
Improving the performance of direct methanol fuel cells by implementing multilayer membranes blended with cellulose nanocrystals
  • DOI:
    10.1016/j.ijhydene.2019.09.194
  • 发表时间:
    2019-11-15
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Hosseinpour, Milad;Sahoo, Madhumita;Holmes, Stuart M.
  • 通讯作者:
    Holmes, Stuart M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Holmes其他文献

Phenotypic Alterations in Adrenal Tumor Cultures
肾上腺肿瘤培养物中的表型改变
  • DOI:
    10.1126/science.148.3678.1733
  • 发表时间:
    1965
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    G. Sato;Toby Rossman;L. Edelstein;Stuart Holmes;V. Buonassisi
  • 通讯作者:
    V. Buonassisi

Stuart Holmes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Holmes', 18)}}的其他基金

Design, Program, Evolve: Engineering efficient electrochemical devices for a net-zero world
设计、编程、进化:为净零世界设计高效电化学装置
  • 批准号:
    EP/W03395X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 62.39万
  • 项目类别:
    Research Grant
Elucidation of membrane interface chemistry for electro-chemical processes
电化学过程膜界面化学的阐明
  • 批准号:
    EP/P009050/1
  • 财政年份:
    2017
  • 资助金额:
    $ 62.39万
  • 项目类别:
    Research Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    $ 62.39万
  • 项目类别:
    EU-Funded
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.39万
  • 项目类别:
    Research Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 62.39万
  • 项目类别:
    Continuing Grant
Next Generation Terahertz Materials
下一代太赫兹材料
  • 批准号:
    DP240103404
  • 财政年份:
    2024
  • 资助金额:
    $ 62.39万
  • 项目类别:
    Discovery Projects
Silicon-based Anode Materials for Next Generation Lithium-ion Batteries
下一代锂离子电池硅基负极材料
  • 批准号:
    LP230100396
  • 财政年份:
    2024
  • 资助金额:
    $ 62.39万
  • 项目类别:
    Linkage Projects
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    $ 62.39万
  • 项目类别:
Wearable, Wireless Deep-tissue Sensing Patch for Continuous Monitoring of Recovery from Microsurgical Tissue Transfer
可穿戴式无线深层组织传感贴片,用于连续监测显微外科组织转移的恢复情况
  • 批准号:
    10637093
  • 财政年份:
    2023
  • 资助金额:
    $ 62.39万
  • 项目类别:
Characterization and Optimization of a Nanofiber-Hydrogel Composite for Tissue Remodeling
用于组织重塑的纳米纤维-水凝胶复合材料的表征和优化
  • 批准号:
    10678462
  • 财政年份:
    2023
  • 资助金额:
    $ 62.39万
  • 项目类别:
Mobile Health and Oral Testing to Optimize Tuberculosis Contact Tracing in Colombia
移动健康和口腔测试可优化哥伦比亚的结核病接触者追踪
  • 批准号:
    10667885
  • 财政年份:
    2023
  • 资助金额:
    $ 62.39万
  • 项目类别:
256-channel Digital Neural Signal Processor Real-Time Data Acquisition System
256通道数字神经信号处理器实时数据采集系统
  • 批准号:
    10630883
  • 财政年份:
    2023
  • 资助金额:
    $ 62.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了