Photonic fibre technologies for solar fuels catalysis
用于太阳能燃料催化的光子纤维技术
基本信息
- 批准号:EP/N013883/1
- 负责人:
- 金额:$ 62.05万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With increasing concerns over current CO2 levels and their association with climate change, research needs to establish a way to prevent further CO2 from reaching the atmosphere. Power production is the highest contributor of CO2 emissions to the atmosphere following by industrial process and transportation. Therefore, establishing technologies that extract the CO2 from these emissions before it reaches the atmosphere is considered the most viable solution. Since various types of CO2 capturing technologies have been developed over the past decade or so, one might ask, why is it that we are still not seeing these technologies rolled out yet? Here are a couple of reasons:- Expensive: There are various capture types but each of them consumed up to 40% of the power that is generated within the plant itself. This reduces the available energy for end-users, e.g., the general public, which is problematic since we are a nation that is increasingly dependent on technology. Longer power plants operation could top up energy lost to maintain increasing demands but this would increase the cost of energy to cover the additional production costs.- Size: Different technologies have different size requirements. A number can be retrofitted to existing plants, so space needs to be available for this, and other can only be applied to large plants to takes time for development and construction and is an all-round expensive route to take.- What about the CO2?: Capturing the CO2 is one thing but what to do with it after is another issue. Researchers continue to focus on its storage in underground depleted gas/oil reservoirs yet there are significant cost implications which occur in the run up to its storage, i.e., transport and injection, etc. Conversion of CO2 into a valuable and reusable product which subsequently closes the cycle would be the best option.This proposal brings together leading chemists, physicists and engineers at Southampton to develop a novel state-of-the-art technology that not only converts CO2 into a synthetic fuel but does so using solar energy. Optimised catalytic active sites incorporated into photonic fibres promote photochemical conversion of CO2 directly into synthetic fuel. Alongside this, computational models and simulations will provide physical insight to evaluate and optimise photonic-fibre catalytic converter technology for synthetic fuel generation. This will subsequently support the development of a lab-scale reactor which will demonstrate the scalability of this state-of-the-art technology.Engagement across the academic, industrial and public sectors will promote further opportunities for expansion and encourage development of early career researchers involved with the programme. The outcomes of the programme will lead to the development of not only new knowledge, but more importantly opportunities for impact within the energy sector.
随着人们对当前二氧化碳水平及其与气候变化的关系的担忧日益增加,研究需要找到一种方法来阻止更多的二氧化碳进入大气。电力生产是向大气排放二氧化碳的最大贡献者,其次是工业过程和运输。因此,在这些排放物到达大气之前,建立将其提取出来的技术被认为是最可行的解决方案。由于各种类型的二氧化碳捕获技术在过去十年左右的时间里已经开发出来,有人可能会问,为什么我们仍然没有看到这些技术的推广?以下是几个原因:-昂贵:有各种各样的捕获类型,但每一种都消耗高达工厂本身产生的40%的电力。这减少了终端用户(如普通公众)的可用能源,这是一个问题,因为我们是一个越来越依赖技术的国家。长时间的发电厂运行可以弥补能源损失,以维持不断增长的需求,但这将增加能源成本,以弥补额外的生产成本。—尺寸:不同的技术有不同的尺寸要求。一些可以对现有的工厂进行改造,因此需要提供空间,而其他只能应用于大型工厂,需要时间进行开发和建设,并且是一个全面昂贵的路线。-二氧化碳呢?捕获二氧化碳是一回事,捕获后如何处理又是另一回事。研究人员继续关注其在地下枯竭气/油藏中的储存,但在其储存过程中,即运输和注入等,存在重大的成本影响。将二氧化碳转化为有价值的、可重复使用的产品,从而结束循环将是最好的选择。这项提案汇集了南安普顿的顶尖化学家、物理学家和工程师,共同开发一种先进的新技术,不仅可以将二氧化碳转化为合成燃料,还可以利用太阳能。优化的催化活性位点整合到光子纤维中,促进二氧化碳直接光化学转化为合成燃料。除此之外,计算模型和模拟将为评估和优化用于合成燃料发电的光子纤维催化转化器技术提供物理见解。这将随后支持实验室规模反应器的开发,这将证明这一最先进技术的可扩展性。学术、工业和公共部门的参与将促进进一步的扩展机会,并鼓励参与该计划的早期职业研究人员的发展。该方案的成果不仅将导致新知识的发展,而且更重要的是在能源部门内产生影响的机会。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Incorporating Metal Organic Frameworks within Microstructured Optical Fibers toward Scalable Photoreactors
- DOI:10.1002/adom.202001421
- 发表时间:2020-12
- 期刊:
- 影响因子:9
- 作者:M. Potter;D. Stewart;K. Ignatyev;T. Bradley;P. Sazio;R. Raja
- 通讯作者:M. Potter;D. Stewart;K. Ignatyev;T. Bradley;P. Sazio;R. Raja
Combining Photocatalysis and Optical Fiber Technology toward Improved Microreactor Design for Hydrogen Generation with Metallic Nanoparticles
- DOI:10.1021/acsphotonics.9b01577
- 发表时间:2020-02
- 期刊:
- 影响因子:7
- 作者:M. Potter;D. Stewart;A. E. Oakley;R. Boardman;Thomas Bradley;P. Sazio;R. Raja
- 通讯作者:M. Potter;D. Stewart;A. E. Oakley;R. Boardman;Thomas Bradley;P. Sazio;R. Raja
Combining catalysis and computational fluid dynamics towards improved process design for ethanol dehydration
- DOI:10.1039/c8cy01564c
- 发表时间:2018-11
- 期刊:
- 影响因子:5
- 作者:M. Potter;L. Armstrong;R. Raja
- 通讯作者:M. Potter;L. Armstrong;R. Raja
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pier Sazio其他文献
Pier Sazio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pier Sazio', 18)}}的其他基金
Composite material hollow core fibres for active photonics
用于主动光子学的复合材料空心光纤
- 批准号:
EP/S036369/1 - 财政年份:2019
- 资助金额:
$ 62.05万 - 项目类别:
Research Grant
NSF Materials World Network: Semiconductor photonic materials inside microstructured optical fibers
NSF 材料世界网络:微结构光纤内的半导体光子材料
- 批准号:
EP/I035307/1 - 财政年份:2012
- 资助金额:
$ 62.05万 - 项目类别:
Research Grant
NSF Materials World Network: Creating Optoelectronic Materials and Devices Inside Microstructured Optical Fibers
NSF 材料世界网络:在微结构光纤内创建光电材料和器件
- 批准号:
EP/G028273/1 - 财政年份:2009
- 资助金额:
$ 62.05万 - 项目类别:
Research Grant
相似海外基金
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
- 批准号:
MR/X034615/1 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Fellowship
Tuneable short-wavelength infrared mode-locked fibre lasers
可调谐短波长红外锁模光纤激光器
- 批准号:
EP/Y001915/1 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Research Grant
Heat regulation by the fibre types in muscle
肌肉纤维类型的热量调节
- 批准号:
DP240101172 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Discovery Projects
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Research Grant
Loughborough University and Fibre Technology Limited KTP 22_23 R5
拉夫堡大学和纤维技术有限公司 KTP 22_23 R5
- 批准号:
10064354 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Knowledge Transfer Partnership
Objective Measurement and Analysis of Fibre Extraction
纤维提取的客观测量和分析
- 批准号:
10089054 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Collaborative R&D
TEsting of Fibre Steered Composites II (TEFSC II)
纤维导向复合材料测试 II (TEFSC II)
- 批准号:
10089409 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Collaborative R&D
Developing a recyclable carbon fibre composite capability for Australia
为澳大利亚开发可回收碳纤维复合材料能力
- 批准号:
IM230100048 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Mid-Career Industry Fellowships
DarkSeis: Seismic Imaging Of The Urban Subsurface Using Dark Fibre
DarkSeis:使用暗光纤对城市地下进行地震成像
- 批准号:
EP/Y020960/1 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Research Grant
Lineat - ReCaFiDi Recyled Carbon Fibre Dispersion
Lineat - ReCaFiDi 再生碳纤维分散体
- 批准号:
10089043 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Collaborative R&D