Randomness Resources for Quantum Technologies

量子技术的随机性资源

基本信息

  • 批准号:
    EP/N014812/1
  • 负责人:
  • 金额:
    $ 11.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Quantum information science promises to fundamentally change the way we do things, not unlike how classical information science continues to change every aspect of our daily lives. Classical information science teaches us how difficult it is to break a cipher, or how long it will take a computer to do a calculation; quantum information science predicts fundamentally secure cryptography, and computers that solve certain problems faster than any conceivable classical machine. At first glance, it is surprising to think that randomness can actually help perform information processing tasks, and yet it can: for example, a random cryptographic key is known to be the best way to hide messages; more surprisingly, there exist problems where, rather than execute a deterministic algorithm as classical computers normally do, it is better to guess -- that is, invoke randomness -- while computing a solution. Thus we say that randomness is a resource in classical information theory; having a coin at hand that one can flip is a tangible asset. This is especially true when one wants to test a complex device or process: send it random inputs, and investigate how the outputs behave.We can also purposely introduce randomness into quantum information protocols and ask if this can make certain tasks easier. It turns out the answer is also yes, giving rise to the study, for example, of random quantum circuits, or random quantum error correcting codes. In the formalism of quantum mechanics these are expressed as random operators, rather than simple random numbers, but they can be thought of as resources for quantum information science in much the same way as in the classical case. However, both classically and quantumly, generating truly random resources is very difficult; one can imagine trying to encrypt terabytes of information by flipping a coin billions of times. In practice we rely on so-called pseudorandom resources that, given a finite amount of time or computing power, can never be distinguished from truly random. If we think of increasingly complex tests one might do to check for randomness, a pseudorandom resource will pass these tests up to a certain level of complexity (and fail beyond that). Such resources are much easier to create than truly random ones, and pseudorandom number generators are a cornerstone of today's information technologies.This research project aims to make pseudorandom resources available to quantum information technologies. In the quantum realm, the notion of pseudorandomness is captured by what are called quantum 't-designs'. These are resources -- ensembles of quantum operators -- that pass randomness tests up to some level of complexity (more precisely, t corresponds to the degree of a statistical moment). The project has two main components; the first will be a systematic study of the mathematical structure of t-designs, finding new ones along the way, and then optimising these resources for specific quantum technologies; at the University of Bristol a technology we focus on is integrated quantum photonics, and so the second part of this project will be to use our theoretical work to propose and perform quantum photonic experiments that demonstrate quantum pseudorandomness.Quantum technology is in its infancy, and this research will be an important early step in understanding and solving the problem of efficiently producing the randomness that is crucial to information science. In the short term, the results will be used to tackle challenging problems such as finding the best way to characterise increasingly complex quantum devices, like the ones being developed by hundreds of partners in the UK Quantum Technology Network. In the longer term, it will enable customised, plug-in pseudorandom resources for any quantum platform, which will be used in a multitude of future quantum information applications.
量子信息科学有望从根本上改变我们做事的方式,就像经典信息科学不断改变我们日常生活的各个方面一样。经典信息科学告诉我们破解密码有多么困难,或者计算机需要多长时间才能完成计算;量子信息科学预测从根本上安全的密码学,以及比任何可以想象的经典机器更快地解决某些问题的计算机。乍一看,令人惊讶的是随机性实际上可以帮助执行信息处理任务,但它确实可以:例如,已知随机密钥是隐藏消息的最佳方法;更令人惊讶的是,存在这样的问题:在计算解决方案时,最好是猜测(即调用随机性),而不是像经典计算机通常那样执行确定性算法。因此,我们说随机性是经典信息论中的一种资源;手头有一枚可以翻转的硬币是一种有形资产。当人们想要测试复杂的设备或过程时尤其如此:向其发送随机输入,并研究输出的行为方式。我们还可以有目的地将随机性引入量子信息协议,并询问这是否可以使某些任务变得更容易。事实证明,答案也是肯定的,从而引发了对随机量子电路或随机量子纠错码等的研究。在量子力学的形式主义中,它们被表示为随机算子,而不是简单的随机数,但它们可以被认为是量子信息科学的资源,与经典情况几乎相同。然而,无论是经典的还是量子的,生成真正的随机资源都是非常困难的;人们可以想象通过抛硬币数十亿次来加密数 TB 的信息。在实践中,我们依赖所谓的伪随机资源,在给定有限的时间或计算能力的情况下,这些资源永远无法与真正的随机资源区分开来。如果我们考虑可能会进行越来越复杂的测试来检查随机性,那么伪随机资源将通过这些测试达到一定的复杂程度(并超出该复杂程度会失败)。这种资源比真正的随机资源更容易创建,伪随机数生成器是当今信息技术的基石。该研究项目旨在使伪随机资源可用于量子信息技术。在量子领域,伪随机性的概念被所谓的量子“t 设计”所捕获。这些资源——量子算子的集合——通过了一定复杂程度的随机性测试(更准确地说,t 对应于统计矩的程度)。该项目有两个主要组成部分;第一个将是对 T 设计的数学结构的系统研究,一路寻找新的设计,然后针对特定的量子技术优化这些资源;在布里斯托大学,我们关注的技术是集成量子光子学,因此该项目的第二部分将是利用我们的理论工作提出并进行量子光子实验,以证明量子伪随机性。量子技术正处于起步阶段,这项研究将是理解和解决有效产生随机性问题的重要早期步骤,而随机性对信息科学至关重要。在短期内,研究结果将用于解决具有挑战性的问题,例如寻找表征日益复杂的量子设备的最佳方法,例如英国量子技术网络的数百个合作伙伴正在开发的设备。从长远来看,它将为任何量子平台提供定制的插入式伪随机资源,这些资源将用于未来的多种量子信息应用。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generating entanglement with linear optics
  • DOI:
    10.1103/physreva.96.043861
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Stasja Stanisic;N. Linden;A. Montanaro;P. Turner
  • 通讯作者:
    Stasja Stanisic;N. Linden;A. Montanaro;P. Turner
Derandomizing Quantum Circuits with Measurement-Based Unitary Designs.
  • DOI:
    10.1103/physrevlett.116.200501
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    P. Turner;D. Markham
  • 通讯作者:
    P. Turner;D. Markham
Randomized benchmarking in measurement-based quantum computing
  • DOI:
    10.1103/physreva.94.032303
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    R. N. Alexander;P. Turner;S. Bartlett
  • 通讯作者:
    R. N. Alexander;P. Turner;S. Bartlett
Quantum simulation of partially distinguishable boson sampling
  • DOI:
    10.1103/physreva.97.062329
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Alexandra E. Moylett;P. Turner
  • 通讯作者:
    Alexandra E. Moylett;P. Turner
Discriminating distinguishability
  • DOI:
    10.1103/physreva.98.043839
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Stasja Stanisic;P. Turner
  • 通讯作者:
    Stasja Stanisic;P. Turner
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Turner其他文献

Studying charge-trapping defects within the silicon lattice of a p-channel CCD using a single-trap ``pumping'' technique
使用单陷阱“泵浦”技术研究 p 通道 CCD 硅晶格内的电荷捕获缺陷
  • DOI:
    10.1088/1748-0221/9/12/c12028
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Daniel Wood;David J. Hall;Neil J. Murray;J. Gow;A. Holland;Peter Turner;D. Burt
  • 通讯作者:
    D. Burt
Cervical immobilization in trauma patients: soft collars better than rigid collars? A systematic review and meta-analysis
  • DOI:
    10.1007/s00586-022-07405-6
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Henrik C. Bäcker;Patrick Elias;Karl F. Braun;Michael A. Johnson;Peter Turner;John Cunningham
  • 通讯作者:
    John Cunningham
Toward Standards for Integration of Instruments into Grid Computing Environments
制定将仪器集成到网格计算环境中的标准
A short report on the prevalence of mental health disturbance in children and young people: Interpretations and implications for the mental health care of adolescent women
  • DOI:
    10.1016/j.cein.2005.04.002
  • 发表时间:
    2004-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Peter Turner
  • 通讯作者:
    Peter Turner
A comparative investigation of supramolecular structures involving copper(II) complexes of imidazolinylalkanimidamides
咪唑啉基烷基酰胺铜(II)配合物超分子结构的比较研究

Peter Turner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Understanding quantum resources through quantum hypothesis testing
通过量子假设检验了解量子资源
  • 批准号:
    24K16984
  • 财政年份:
    2024
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The source of quantum advantages: a unified approach to quantum resources of states and processes
量子优势的来源:状态和过程量子资源的统一方法
  • 批准号:
    22KF0067
  • 财政年份:
    2023
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CQIS: RUI: Quantum Resources via Free Operation Symmetry
CQIS:RUI:通过自由操作对称的量子资源
  • 批准号:
    2309157
  • 财政年份:
    2023
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Standard Grant
Characterizing Resources for Quantum Information
表征量子信息资源
  • 批准号:
    RGPIN-2018-05188
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
Detection and Quantification of Quantum Resources
量子资源的检测和量化
  • 批准号:
    RGPIN-2022-04098
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
The power of quantum resources
量子资源的力量
  • 批准号:
    DGECR-2022-00119
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Launch Supplement
The power of quantum resources
量子资源的力量
  • 批准号:
    RGPIN-2022-03025
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of dynamical quantum resources
动态量子资源理论
  • 批准号:
    RGPIN-2020-03938
  • 财政年份:
    2022
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing Resources for Quantum Information
表征量子信息资源
  • 批准号:
    RGPIN-2018-05188
  • 财政年份:
    2021
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
Theories of dynamical quantum resources
动态量子资源理论
  • 批准号:
    RGPIN-2020-03938
  • 财政年份:
    2021
  • 资助金额:
    $ 11.89万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了