Theories of dynamical quantum resources
动态量子资源理论
基本信息
- 批准号:RGPIN-2020-03938
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For any given kind of resource, one needs a theory to answer basic questions such as: which collections of resources can be converted into which others, and what are the ways in which a given conversion can be accomplished? Chemistry fits this mold, as it answers the question of how collections of chemicals available in abundance can be converted to other, more useful, products. Thermodynamics is another example, as it answers questions about how various sorts of nonequilibrium states-thermal, mechanical, chemical, etc-can be converted into others, for instance, how useful work can be extracted from a pair of heat baths at different temperatures. The poster child for the resource-theoretic approach today is entanglement theory. Although the notion of entanglement was introduced in the 1930s, it was not until the mid-nineties that we began to have a proper understanding of entanglement, after it was recognized to be useful for certain quantum information protocols. In other words, the turning point occurred when researchers began to study entanglement as a resource. Since then, entanglement theory has found applications not only in quantum computation, cryptography and communication, but in many other areas of physics, including the study of phase transitions, characterizing the ground states of many-body systems, holography in quantum field theories, and the black hole information-loss paradox. Inspired by this success, there are now many other properties of quantum systems, besides entanglement that are being studied as resources: for instance, the extent to which a quantum channel breaks symmetries, the extent to which a system deviates from thermal equilibrium, and the extent to which a quantum state is contextual. In addition to the basic questions above, this proposal aims to provide answers to questions such as: How does one measure the quality of different dynamical resources? If one particular resource channel cannot be converted to another deterministically, can it be done non-deterministically, and if so with what probability? What if one has access to a catalyst? A particularly fundamental problem is to identify the equivalence classes of quantum channels that can be used to simulate each other in the limit of asymptotically-many copies of the resource and to determine the rates of inter-conversion. Answering these concrete questions typically leads to significant new insights into the nature of the physical or information-theoretic phenomenon in question--entanglement, asymmetry, athermality, etc-- and provides a framework to organize theoretical results concerning those phenomena. As entanglement theory has demonstrated, the resource-theoretic approach has the capacity to revolutionize the way we think about familiar topics. Particularly, this research program will develop new methods in quantum information, improve our understanding of quantum physics in general, and help Canada establish its leadership in quantum science.
对于任何一种给定的资源,都需要一个理论来回答基本的问题,例如:哪些资源集合可以转换为哪些其他资源,以及如何实现给定的转换?化学符合这种模式,因为它回答了如何将大量可用的化学物质转化为其他更有用的产品的问题。热力学是另一个例子,因为它回答了各种非平衡态--热的、机械的、化学的等等--如何转换成其他状态的问题,例如,如何从一对不同温度的热浴中提取有用功。如今,资源论方法的典型代表是纠缠理论。虽然纠缠的概念是在20世纪30年代提出的,但直到90年代中期,我们才开始对纠缠有一个正确的理解,因为它被认为对某些量子信息协议有用。换句话说,转折点发生在研究人员开始将纠缠作为一种资源进行研究的时候。从那时起,纠缠理论不仅在量子计算、密码学和通信中得到了应用,而且在物理学的许多其他领域也得到了应用,包括相变的研究、多体系统基态的表征、量子场论中的全息术和黑洞信息丢失悖论。受这一成功的启发,除了纠缠之外,量子系统还有许多其他属性正在被作为资源进行研究:例如,量子信道打破对称性的程度,系统偏离热平衡的程度,以及量子状态的程度。除了上述基本问题外,本提案旨在回答以下问题:如何衡量不同动态资源的质量?如果一个特定的资源通道不能被确定性地转换成另一个,它可以被非确定性地完成吗?如果可以,概率是多少?如果有人能接触到催化剂呢?一个特别基本的问题是确定量子信道的等价类,这些等价类可以用于在资源的渐近多个副本的限制下相互模拟,并确定相互转换的速率。对这些具体问题的研究通常会导致对所讨论的物理或信息理论现象的性质的重要新见解-纠缠,不对称,无热性等-并提供一个框架来组织有关这些现象的理论结果。正如纠缠理论所证明的那样,资源论方法有能力彻底改变我们对熟悉话题的思考方式。特别是,该研究计划将开发量子信息的新方法,提高我们对量子物理学的理解,并帮助加拿大建立其在量子科学方面的领导地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gour, Gilad其他文献
Comparison of incoherent operations and measures of coherence
- DOI:
10.1103/physreva.94.052336 - 发表时间:
2016-11-30 - 期刊:
- 影响因子:2.9
- 作者:
Chitambar, Eric;Gour, Gilad - 通讯作者:
Gour, Gilad
Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence
- DOI:
10.1103/physrevlett.117.030401 - 发表时间:
2016-07-12 - 期刊:
- 影响因子:8.6
- 作者:
Chitambar, Eric;Gour, Gilad - 通讯作者:
Gour, Gilad
Reversible Framework for Quantum Resource Theories
- DOI:
10.1103/physrevlett.115.070503 - 发表时间:
2015-08-14 - 期刊:
- 影响因子:8.6
- 作者:
Brandao, Fernando G. S. L.;Gour, Gilad - 通讯作者:
Gour, Gilad
Universal Uncertainty Relations
- DOI:
10.1103/physrevlett.111.230401 - 发表时间:
2013-12-03 - 期刊:
- 影响因子:8.6
- 作者:
Friedland, Shmuel;Gheorghiu, Vlad;Gour, Gilad - 通讯作者:
Gour, Gilad
Monogamy of entanglement without inequalities
- DOI:
10.22331/q-2018-08-13-81 - 发表时间:
2018-08-13 - 期刊:
- 影响因子:6.4
- 作者:
Gour, Gilad;Guo, Yu - 通讯作者:
Guo, Yu
Gour, Gilad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gour, Gilad', 18)}}的其他基金
Theories of dynamical quantum resources
动态量子资源理论
- 批准号:
RGPIN-2020-03938 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Theories of dynamical quantum resources
动态量子资源理论
- 批准号:
RGPIN-2020-03938 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Quantum Resource Theories
量子资源理论
- 批准号:
RGPIN-2015-05271 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Quantum Resource Theories
量子资源理论
- 批准号:
RGPIN-2015-05271 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Quantum Resource Theories
量子资源理论
- 批准号:
RGPIN-2015-05271 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Quantum Resource Theories
量子资源理论
- 批准号:
RGPIN-2015-05271 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Quantum Resource Theories
量子资源理论
- 批准号:
RGPIN-2015-05271 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Quantum resource theories
量子资源理论
- 批准号:
341610-2010 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Quantum resource theories
量子资源理论
- 批准号:
341610-2010 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Quantum resource theories
量子资源理论
- 批准号:
341610-2010 - 财政年份:2012
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Adiabatic and dynamical algorithms for quantum hardware
量子硬件的绝热和动态算法
- 批准号:
EP/Y005058/2 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Research Grant
Quantum Manybody Dynamical Effects in Non-linear Optical Spectroscopy
非线性光谱学中的量子多体动力学效应
- 批准号:
2404788 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
CAREER: Orbital-based Descriptors for Dynamical Properties of Quantum Defects
职业:基于轨道的量子缺陷动力学特性描述符
- 批准号:
2340733 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
Elucidating the dynamical and structural molecular factors at the origin of non-enzymatic protein-protein and protein-DNA cross-links
阐明非酶蛋白质-蛋白质和蛋白质-DNA 交联起源的动力学和结构分子因素
- 批准号:
10709399 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Adiabatic and dynamical algorithms for quantum hardware
量子硬件的绝热和动态算法
- 批准号:
EP/Y005058/1 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Research Grant
Dynamical topological phases in monitored quantum circuits
受监控量子电路中的动态拓扑相
- 批准号:
2892177 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Studentship
Development of next-generation quantum dynamical simulation methods with applications to charge and exciton transport in nanoscale molecular materials
开发下一代量子动力学模拟方法,应用于纳米级分子材料中的电荷和激子传输
- 批准号:
2729533 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Studentship
Dynamical Phenomena in Quantum Field Theory and String Theory
量子场论和弦理论中的动力学现象
- 批准号:
SAPIN-2022-00018 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Subatomic Physics Envelope - Individual
Quantum-dynamical methods for modelling photo-induced processes in molecules
用于模拟分子中光诱导过程的量子动力学方法
- 批准号:
RGPIN-2018-04706 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Theories of dynamical quantum resources
动态量子资源理论
- 批准号:
RGPIN-2020-03938 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual