Nano-Engineered Flow Technologies: Simulation for Design across Scale and Phase
纳米工程流动技术:跨尺度和阶段的设计仿真
基本信息
- 批准号:EP/N016602/1
- 负责人:
- 金额:$ 430.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the next 25 years, society will face major challenges in health, transportation, energy and climate that will demand novel engineering solutions. Recent rapid advances in device and materials fabrication offer an important opportunity to help meet these challenges by enabling new technologies to be engineered down to the nanometre scale. Devices that manipulate fluids at the smallest scales exhibit complex and sometimes counter-intuitive phenomena that present novel scientific and technological opportunities. The scientific opportunity is to understand and model how the microscopic physics at and around phase interfaces drives the overall flow behaviour. The technological opportunity is to exploit this behaviour to design and manufacture devices with unprecedented capabilities. This research Programme is about uncovering the engineering science of flows that are intrinsically multiscale, and encapsulating this in efficient modelling software in order to enable the design of next generation technologies.This Programme aims to underpin future UK innovation in nano-structured and smart interfaces by delivering a simulation-for-design capability for nano-engineered flow technologies, as well as a better understanding of the critical interfacial fluid dynamics. We will produce software that a) resolves interfaces down to the molecular scale, and b) spans the scales relevant to the engineering application. As accurate molecular/particle methods are computationally unfeasible at engineering scales, and efficient but conventional fluids models do not capture the important molecular physics, this is a formidable multiscale problem in both time and space. Our software will have embedded intelligence that decides dynamically on the correct simulation tools needed at each interface location, for every phase combination, and matches these tools to appropriate computational platforms for maximum efficiency.The outcome will be a revolutionary new framework for simulating multiscale multiphysics systems in nature as well as engineering, greatly surpassing current modelling capabilities. The step-change advances this represents include:- predictive simulations of engineering-scale systems with nanoscale fidelity;- new insight into the physics of interfacial flow systems;- computational resources allocated in-simulation to enable more rapid system analysis;- assessment of proposed flow system designs that were not previously amenable to investigation;- accessing trans-disciplinary applications in granular flows and avalanche dynamics, and social/economic systems including urban traffic modelling and financial market stability.This work is strongly supported by 9 external partners, ranging from large multinational companies to an SME. The targeted applications all depend on the behaviour of interfaces that divide phases, and include: radical cancer treatments that exploit nano-bubble cavitation; the cooling of high-power electronics through evaporative nano-menisci; nanowire membranes for separating oil and water, e.g. for oil spills; and smart nano-structured surfaces for drag reduction and anti-fouling, with applications to low-emissions aerospace, automotive and marine transport. These applications make demands on simulation for engineering design that far outstrip current capabilities. Our partners will therefore be 'early-adopters' of this Programme's outcomes in order to meet the technical capabilities they will need to provide in the future.This interdisciplinary research draws on techniques and results across the boundaries of applied mathematics, physics, mechanical engineering, and computing. Its timeliness lies in the convergence of a uniquely-qualified academic team with a group of engaged and committed industrial partners, who will work together to exploit current and emerging nano-engineered flow systems for societal and economic benefit to the UK and elsewhere.
未来25年,社会将面临健康、交通、能源和气候方面的重大挑战,这将需要新的工程解决方案。最近在器件和材料制造方面的快速发展提供了一个重要的机会,通过使新技术能够被设计到纳米尺度来帮助应对这些挑战。在最小尺度上操纵流体的设备表现出复杂的,有时甚至是违反直觉的现象,这些现象带来了新的科学和技术机会。科学的机会是理解和模拟相界面处和周围的微观物理如何驱动整体流动行为。技术机会是利用这种行为来设计和制造具有前所未有的功能的设备。该研究计划旨在揭示本质上是多尺度的流体工程科学,并将其封装在高效的建模软件中,以实现下一代技术的设计。该计划旨在通过为纳米工程流体技术提供模拟设计能力,以及更好地理解临界界面流体动力学。我们将制作软件,a)解决接口下降到分子尺度,和B)跨越规模相关的工程应用。由于精确的分子/粒子方法在工程尺度上计算是不可行的,并且有效但常规的流体模型不能捕获重要的分子物理学,因此这是一个在时间和空间上都难以克服的多尺度问题。我们的软件将具有嵌入式智能,可以动态地决定每个界面位置、每个相组合所需的正确模拟工具,并将这些工具与适当的计算平台相匹配,以实现最高效率。其结果将是一个革命性的新框架,用于模拟自然界和工程中的多尺度多物理场系统,大大超过目前的建模能力。这代表的阶跃变化的进步包括:-具有纳米级保真度的工程规模系统的预测模拟;-对界面流动系统物理学的新认识;-在模拟中分配的计算资源,以实现更快速的系统分析;-对以前不适合调查的拟议流动系统设计的评估;- 访问跨学科的应用在颗粒流和雪崩动力学,和社会/经济系统,包括城市交通模型和金融市场稳定性。这项工作得到了9个外部合作伙伴的大力支持,从大型跨国公司到中小企业。目标应用都取决于划分相的界面的行为,包括:利用纳米气泡空化的激进癌症治疗;通过蒸发纳米气泡冷却大功率电子设备;用于分离油和水的纳米线膜,例如用于漏油;以及用于减阻和防污的智能纳米结构表面,应用于低排放航空航天、汽车和海上运输。这些应用对工程设计的仿真提出了远远超出当前能力的要求。因此,我们的合作伙伴将成为该计划成果的“早期采用者”,以满足他们未来需要提供的技术能力。这种跨学科研究借鉴了应用数学,物理,机械工程和计算领域的技术和成果。它的及时性在于一个合格的学术团队与一群参与和承诺的工业合作伙伴的融合,他们将共同努力,利用当前和新兴的纳米工程流动系统,为英国和其他地方带来社会和经济利益。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mean-field kinetic theory approach to Langmuir evaporation of polyatomic liquids
- DOI:10.1063/5.0021227
- 发表时间:2020-09
- 期刊:
- 影响因子:4.6
- 作者:S. Busuioc;L. Gibelli
- 通讯作者:S. Busuioc;L. Gibelli
Modeling Leidenfrost Levitation of Soft Elastic Solids.
软弹性固体的莱顿弗罗斯特悬浮建模。
- DOI:10.1103/physrevlett.131.168201
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Binysh J
- 通讯作者:Binysh J
Raman spectroscopy of gallium ion irradiated graphene
- DOI:10.1016/j.diamond.2018.09.011
- 发表时间:2018-10
- 期刊:
- 影响因子:4.1
- 作者:Anthea Agius Anastasi;A. Valsesia;P. Colpo;M. Borg;G. Cassar
- 通讯作者:Anthea Agius Anastasi;A. Valsesia;P. Colpo;M. Borg;G. Cassar
Towards a mathematical theory of behavioral human crowds
- DOI:10.1142/s0218202522500087
- 发表时间:2022-02-01
- 期刊:
- 影响因子:3.5
- 作者:Bellomo, Nicola;Gibelli, Livio;Reali, Alessandro
- 通讯作者:Reali, Alessandro
A weighted particle scheme for Enskog-Vlasov equation to simulate spherical nano-droplets/bubbles
Enskog-Vlasov 方程的加权粒子方案模拟球形纳米液滴/气泡
- DOI:10.1016/j.jcp.2022.111873
- 发表时间:2023
- 期刊:
- 影响因子:4.1
- 作者:Busuioc S
- 通讯作者:Busuioc S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duncan Lockerby其他文献
Duncan Lockerby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duncan Lockerby', 18)}}的其他基金
Multiscale Simulation of Rarefied Gas Flow for Engineering Design
用于工程设计的稀薄气体流动的多尺度模拟
- 批准号:
EP/V01207X/1 - 财政年份:2021
- 资助金额:
$ 430.77万 - 项目类别:
Research Grant
The First Open-Source Software for Non-Continuum Flows in Engineering
第一个用于工程非连续流的开源软件
- 批准号:
EP/K038664/1 - 财政年份:2013
- 资助金额:
$ 430.77万 - 项目类别:
Research Grant
Investigation of alternative drag-reduction strategies in turbulent boundary layers by using wall forcing
使用壁力研究湍流边界层中的替代减阻策略
- 批准号:
EP/G060215/1 - 财政年份:2009
- 资助金额:
$ 430.77万 - 项目类别:
Research Grant
Extended Continuum Models for Transient and Rarefied Hypersonic Aerothermodynamics
瞬态和稀薄高超声速空气热力学的扩展连续体模型
- 批准号:
EP/F014201/1 - 财政年份:2008
- 资助金额:
$ 430.77万 - 项目类别:
Research Grant
Scalable Wirelessly Interconnected Flow-Control Technologies (SWIFT)
可扩展的无线互连流量控制技术 (SWIFT)
- 批准号:
EP/G038686/1 - 财政年份:2008
- 资助金额:
$ 430.77万 - 项目类别:
Research Grant
Novel passive techniques for reducing skin-friction drag
减少表面摩擦阻力的新型被动技术
- 批准号:
EP/F004753/1 - 财政年份:2007
- 资助金额:
$ 430.77万 - 项目类别:
Research Grant
相似海外基金
Reciprocal effects between scaffold geometry and ventricular vortex flow on viability and performance of tissue-engineered mitral valve
支架几何形状和心室涡流对组织工程二尖瓣的活力和性能的相互影响
- 批准号:
10583424 - 财政年份:2023
- 资助金额:
$ 430.77万 - 项目类别:
Engineered multifunctional membranes for aqueous organic redox flow battery
用于水性有机氧化还原液流电池的工程多功能膜
- 批准号:
DE220100427 - 财政年份:2022
- 资助金额:
$ 430.77万 - 项目类别:
Discovery Early Career Researcher Award
A New Approach to Vascular Reconstruction using Graphical 3D Printing and Flow Modelling to create personalised precision engineered surgery
使用图形 3D 打印和流动建模进行血管重建的新方法,以创建个性化的精密工程手术
- 批准号:
463878 - 财政年份:2022
- 资助金额:
$ 430.77万 - 项目类别:
Operating Grants
Microfluidic Protein Flow Crystallization Using Engineered Nucleation Features for Serial and Traditional Crystallography
使用工程成核特征进行串行和传统晶体学的微流蛋白流结晶
- 批准号:
10323393 - 财政年份:2021
- 资助金额:
$ 430.77万 - 项目类别:
I-Corps: Engineered bio-inspired surface for passive flow control
I-Corps:用于被动流量控制的仿生工程表面
- 批准号:
1829311 - 财政年份:2018
- 资助金额:
$ 430.77万 - 项目类别:
Standard Grant
SBIR Phase II: Engineered Nanoporous Ceramic Membranes that Enable High-Performance and Low-Cost Flow Batteries
SBIR 第二阶段:工程纳米多孔陶瓷膜可实现高性能和低成本液流电池
- 批准号:
1831090 - 财政年份:2018
- 资助金额:
$ 430.77万 - 项目类别:
Standard Grant
Novel Engineered Gas Diffusion Layer with Integral Flow Field for Fuel Cells
用于燃料电池的具有整体流场的新型工程气体扩散层
- 批准号:
362787-2008 - 财政年份:2009
- 资助金额:
$ 430.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Microfluidic Flow through Glancing Angle Deposition (GLAD) Engineered Thin Films
通过掠射角沉积 (GLAD) 工程薄膜进行微流体流动
- 批准号:
361813-2009 - 财政年份:2009
- 资助金额:
$ 430.77万 - 项目类别:
Postgraduate Scholarships - Master's
Novel Engineered Gas Diffusion Layer with Integral Flow Field for Fuel Cells
用于燃料电池的具有整体流场的新型工程气体扩散层
- 批准号:
362787-2008 - 财政年份:2008
- 资助金额:
$ 430.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Microfluidic Flow through Glancing Angle Deposition (GLAD) Engineered Thin Films
通过掠射角沉积 (GLAD) 工程薄膜进行微流体流动
- 批准号:
361813-2008 - 财政年份:2008
- 资助金额:
$ 430.77万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's