I-Corps: Engineered bio-inspired surface for passive flow control

I-Corps:用于被动流量控制的仿生工程表面

基本信息

  • 批准号:
    1829311
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project stems from the fact that the micro-textured surface proposed in this project can reduce drag - the force experienced by an object moving through air or water. Ground transportation vehicles, airplanes, drones, underwater vessels, wind turbines, and HVAC fans all experience the adverse effects of drag in terms of increased fuel/electricity consumption, increased greenhouse gas emissions, and reduced energy production. Potential efficiency gains using the proposed technology can save numerous industries significant energy costs, reduce greenhouse gas emissions, and solve a multitude of problems associated with aerodynamic/hydrodynamic inefficiencies. For example, a 5% increase in efficiency due to drag reduction translates to $5 billion in fuel savings for the trucking industry and the equivalent energy production of an additional 2000 wind turbines per year for the wind energy industry. Micro-textured surfaces for passive flow control presents a unique opportunity in enhancing efficiency in that it can be designed for optimal performance depending on the application to yield the highest possible efficiency gains. This I-Corps project features a micro-structured coating inspired by shark-skin, which passively modifies the flow close to the surface of an object resulting in drag reduction both in air and water applications. Experimental results performed using the section of a wind turbine airfoil in a water tunnel showed that the proposed micro-structured film, made out of a commercially available polyurethane, can delay and reduce the size of the separation bubble, the phenomenon responsible for increased drag, by 60%. The effect of this reduction on drag was also confirmed in wind tunnel experiments. Reductions of up to 30% and 13% were recorded over an airfoil and a cylinder, respectively. Additionally, enhancements of up to 45% in lift generated by an airfoil was measured when the micro-structured coating was applied to the surface. The ability of the proposed technology to increase fuel and conversion efficiencies will have a transformative impact in many industries including ground transportation, aerospace, and wind energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个i-Corps项目的更广泛的影响/商业潜力源于这样一个事实,即该项目中提出的微纹理表面可以减少阻力--物体在空气或水中移动时所受到的力。地面交通工具、飞机、无人机、水下船只、风力涡轮机和暖通空调风扇都经历了阻力的不利影响,包括燃料/电力消耗增加、温室气体排放增加和能源生产减少。使用拟议技术的潜在效率收益可以节省许多行业的大量能源成本,减少温室气体排放,并解决与空气动力学/流体动力学低效相关的许多问题。例如,减阻带来的效率提高5%,相当于为卡车运输业节省了50亿美元的燃料,相当于风能行业每年多生产2000台风力涡轮机。用于被动流量控制的微纹理表面在提高效率方面提供了独特的机会,因为它可以根据应用程序的不同设计为最佳性能,以产生最大可能的效率收益。这个i-Corps项目的特色是一种受鲨鱼皮启发的微结构涂层,它被动地修改靠近物体表面的流动,从而在空气和水应用中都能减少阻力。在水洞中使用风力机翼型截面进行的实验结果表明,所提出的微结构薄膜由商业上可获得的聚氨酯制成,可以延迟并减小分离气泡的尺寸,而分离气泡是导致阻力增加的现象,可达60%。风洞实验也证实了这种减阻效果。翼型和圆柱体上分别记录到了高达30%和13%的减量。此外,将微结构涂层应用于翼型表面时,测量到翼型产生的升力增加了高达45%。拟议技术提高燃料和转换效率的能力将在许多行业产生革命性影响,包括地面交通、航空航天和风能。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Burak Aksak其他文献

Burak Aksak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Burak Aksak', 18)}}的其他基金

Spatially resolve three-dimensional tactile sensing using functionally graded piezoresistive pillar arrays
使用功能梯度压阻柱阵列空间解析三维触觉传感
  • 批准号:
    1810402
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Manufacturing of Bio-Inspired Polymer Micro/Nano-Fiber Arrays as New Gripping Materials
SBIR 第一阶段:制造仿生聚合物微/纳米纤维阵列作为新型夹持材料
  • 批准号:
    1014183
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
STTR Phase I: Biologically Inspired Polymer Fiber Adhesives as Enhanced Gripping Materials
STTR 第一阶段:仿生聚合物纤维粘合剂作为增强抓握材料
  • 批准号:
    0930610
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

The establishment of biliary drainage system in bio-engineered liver
生物工程肝胆汁引流系统的建立
  • 批准号:
    22K08689
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Engineered interlayers of bio-retardant and nano-reinforcement on polymers
聚合物生物阻燃和纳米增强工程夹层
  • 批准号:
    DP220101427
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Projects
A bio-engineered hepatic niche for ex vivo expansion of HSCs
用于 HSC 离体扩增的生物工程肝脏生态位
  • 批准号:
    10452482
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
A bio-engineered hepatic niche for ex vivo expansion of HSCs
用于 HSC 离体扩增的生物工程肝脏生态位
  • 批准号:
    10631071
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Novel, engineered bio-inks for 3D printing of complex, perfusable structures
用于 3D 打印复杂可灌注结构的新型工程生物墨水
  • 批准号:
    2103812
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Engineered bio- and heterogeneous catalysts for improved polymer circularity
工程生物催化剂和非均相催化剂可改善聚合物的循环度
  • 批准号:
    2887508
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
CAREER: Bio-Inspired Genetically Engineered Self-Healing for Cementitious Materials
职业:水泥材料的生物启发基因工程自我修复
  • 批准号:
    1846984
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Center for the Advancement of Wearable Technologies (CAWT): Engineered (Bio)Interfaces, Energy Harvesting/Storage and Data Analytics for Health and Diagnostic Monitoring
可穿戴技术促进中心 (CAWT):用于健康和诊断监测的工程(生物)接口、能量收集/存储和数据分析
  • 批准号:
    1849243
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Cooperative Agreement
Improvement of survival rate and ECM analysis using bio-engineered liver derived 3D scaffold
使用生物工程肝脏衍生的 3D 支架提高存活率和 ECM 分析
  • 批准号:
    18K08701
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probing the reactivity of bio-engineered magnetic magnetite nanoparticles with metals and metalloids
探讨生物工程磁性磁铁矿纳米粒子与金属和类金属的反应性
  • 批准号:
    397843392
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了