Mapping the biomechanical properties of the sub-glottal region of the human vocal tract

绘制人类声道声门下区域的生物力学特性

基本信息

  • 批准号:
    EP/N018931/1
  • 负责人:
  • 金额:
    $ 3.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Phonation, or our ability to speak, arises from the process of delivering a controlled exhalation of air across the vocal folds (often know as vocal cords). This causes the vocal folds to vibrate, at a frequency that can be controlled by our vocal muscles. The resultant airflow is now modulated and passes into our 'vocal tract', which is in effect our mouth. We then form the modulated air flow into sounds by muscular control of our tongue, lip and other vocal tract features.The starting point for phonation therefore is the oscillation of our vocal folds. As we exhale, the moving passage of air creates a pressure drop; this in turn causes these soft tissues to rise up, until they meet. When full closure occurs the airflow ceases, and the air pressure returns to normal, causing the focal folds to fall back again. It is this cycle, repeated at audible frequencies that creates the initial modulated airflow, that we form into sounds. This process is known as the myoelastic cycle; which was first described by Ingo Titze.Whilst visualisation of the vocal tract is readily achievable superior to the vocal folds, there is very little published data on the impact of low pressure inferior to vocal folds. Recent research has presented strong evidence that vortices form in the sub-glottal region, which will inherently aid closure by reducing the air pressure below the vocal folds.Our recently published work, using data obtained with our partners at Wisconsin Medical Centers presented data that indicated that the elastic properties of the sub-glottal mucosa were non-linear - such that their deformation under low pressure would cause a funnel effect inferior to the vocal folds. This variable deformation could offer support for the vortex theory. The study was carried out using porcine larynges. UKE Hamburg have offered us the opportunity to repeat this study using excised human donor larynges. The purpose of this OTG is to establish and enable the co-supervision of a Dotoral study that will measure and map the elastic properties of the sub-glottal mucosa in human tissue. This data will be made available to other international teams who are actively examining the importance of the aerodynamics of the vocal tract, and how it impacts on our ability to phonate. We will develop mathematical models to explain the data that is measured, and determine if it does support our theory that deformation of the mucosa below the vocal folds results in a funnel shape that promotes the creation of vortices. If our theory is correct then it indicates the importance of this region in giving us the ability to speak.In order to maximise the cost effectiveness of the grant we will also carry out trials of our innovative laser speckle skin analysis device. This has been developed to investigate if laser speckle can be used to detect lesions in skin (e.g. melanoma). We will carry out a series of experiments with excised donor human larynges to determine if laser speckle could also be deployed by phonosurgeons to detect tissue damage in vocal folds that is not visible from the surface. Other international research institutions have expressed interest in applying the laser speckle technique in new areas of research if the UKE study is successful.
发声,或我们说话的能力,源于通过声带(通常称为声带)传递受控的呼出空气的过程。这会导致声带以我们的声带肌肉可以控制的频率振动。由此产生的气流现在被调节并进入我们的“声道”,实际上就是我们的嘴巴。然后,我们通过肌肉控制我们的舌头、嘴唇和其他声道特征,将调制后的气流形成声音。因此,发声的起点是我们声带的振荡。当我们呼气时,移动的空气通道会产生压力下降;这反过来会导致这些软组织向上上升,直到它们相遇。当发生完全关闭时,气流停止,气压恢复正常,导致焦点折叠再次回落。正是这个以可听到的频率重复的循环,创造了最初的调制气流,我们形成了声音。这个过程被称为肌弹性循环,最早是由Ingo Titz描述的。虽然声道的可视化比声带更容易实现,但关于低于声带的低压的影响的公开数据很少。最近的研究表明,旋涡形成在声门下区域,这将固有地通过降低声带下方的气压来帮助关闭。我们最近发表的工作,使用我们与威斯康星医学中心的合作伙伴获得的数据,提供了数据,表明声门下粘膜的弹性特性是非线性的-因此它们在低压下的变形将导致不如声带的漏斗效应。这种可变变形可以为涡旋理论提供支持。这项研究是用猪的喉咙进行的。Uke Hamburg为我们提供了使用切除的人类供体喉部重复这项研究的机会。这项OTG的目的是建立并实现一项博士研究的共同监督,该研究将测量和绘制人类组织声门下粘膜的弹性特性。这些数据将提供给其他国际团队,他们正在积极研究声道空气动力学的重要性,以及它对我们发声能力的影响。我们将开发数学模型来解释测量到的数据,并确定它是否支持我们的理论,即声带褶皱下的粘膜变形会导致漏斗形状,从而促进涡流的产生。如果我们的理论是正确的,那么它表明了这个地区在赋予我们说话能力方面的重要性。为了最大限度地提高赠款的成本效益,我们还将对我们创新的激光散斑皮肤分析设备进行试验。这是为了研究激光散斑是否可以用来检测皮肤损伤(例如黑色素瘤)。我们将对切除的供体喉进行一系列实验,以确定声外科医生是否也可以使用激光散斑来检测从表面看不到的声带组织损伤。其他国际研究机构表示,如果UKE研究成功,有兴趣将激光散斑技术应用于新的研究领域。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Texture-based characterization of subskin features by specified laser speckle effects at ? = 650 nm region for more accurate parametric 'skin age' modelling.
通过特定的激光散斑效应对皮下特征进行基于纹理的表征?
Biomechanical Flow Amplification Arising From the Variable Deformation of the Subglottic Mucosa.
声门下粘膜的可变变形引起的生物力学流动放大。
Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.
声带组织硬度相对于人工损伤深度的变化的量化。
CONIC DEFORMATION OF THE SUBGLOTTIC MUCOSA AND ITS IMPACT ON THE AERODYNAMICS OF THE AIRFLOW OVER THE VOCAL FOLDS
声门下粘膜的圆锥形变形及其对声带上气流空气动力学的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goodyer E
  • 通讯作者:
    Goodyer E
3D non-invasive inspection of the skin lesions by close-range and low-cost photogrammetric techniques
通过近距离、低成本摄影测量技术对皮肤病变进行 3D 无创检查
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Goodyer其他文献

Eric Goodyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Goodyer', 18)}}的其他基金

Fruit Ripening Overlay SysTem (FROST) Sensing TIming Communication (STIC)
水果成熟叠加系统 (FROST) 传感定时通信 (STIC)
  • 批准号:
    NE/P008895/1
  • 财政年份:
    2016
  • 资助金额:
    $ 3.12万
  • 项目类别:
    Research Grant
Investigation of the relationship between vocal fold tension and electrical stimulation of the recurrent laryngeal nerve in a canine model
犬模型声带张力与喉返神经电刺激关系的研究
  • 批准号:
    EP/E04087X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 3.12万
  • 项目类别:
    Research Grant

相似海外基金

Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
Rapid non-invasive biomechanical imaging of neural crest cell migration in vivo
体内神经嵴细胞迁移的快速非侵入性生物力学成像
  • 批准号:
    10811154
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
A Novel Fiber Embedded Hydrogel Temporomandibular Joint Disc Replacement
新型纤维嵌入水凝胶颞下颌关节盘置换术
  • 批准号:
    10893071
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
Addressing bone marrow lesions that compromise osteochondral tissue repair
解决损害骨软骨组织修复的骨髓病变
  • 批准号:
    10822755
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
Modulation of MicroRNAs to Engineer a Layered Osteochondral Tissue Construct
调节 MicroRNA 设计分层骨软骨组织结构
  • 批准号:
    10606179
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
In vivo high-resolution mapping of the elastic moduli and tensile stress in the human cornea
人体角膜弹性模量和拉应力的体内高分辨率绘图
  • 批准号:
    10633769
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
  • 批准号:
    10837289
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
Democratizing embryo biomechanics: Development of robust and accessible methods to quantify sub-cellular mechanics in vivo
胚胎生物力学民主化:开发稳健且易于使用的方法来量化体内亚细胞力学
  • 批准号:
    10724783
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
Elucidating the Role of Biomechanical Strain in Atrial Physiology and Arrhythmias
阐明生物力学应变在心房生理和心律失常中的作用
  • 批准号:
    10750632
  • 财政年份:
    2023
  • 资助金额:
    $ 3.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了