Supercharged enzyme-polymer surfactant bioblocks for the preparation of organophosphate decontaminating materials
用于制备有机磷去污材料的增压酶聚合物表面活性剂生物嵌段
基本信息
- 批准号:EP/N026586/1
- 负责人:
- 金额:$ 45.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since their widespread application as pesticides in rural areas of developing countries, it is estimated that approximately 3 million people worldwide are poisoned by organophosphates (OPs) every year. OPs have also been used in chemical warfare agent formulations, in incidents including the Ghouta Sarin Attack in Syria, 2013, and the Japanese subway attacks in 1994 and 1995. According to a French intelligence assessment published in September 2013, stockpiles in Syria alone include several hundreds of tonnes of sarin and several tens of tonnes of VX. Accordingly, this research proposal describes the application of synthetic biology for the rational design of versatile supercharged enzyme-polymer surfactant building blocks (bioblocks) for the preparation of organophosphate decontaminating materials that span all three phases of matter. Here, the surfaces of synthetic supercharged variants of the organophosphate-degrading enzyme organophosphate hydrolase (OPH) will be radically re-engineered to produce adhesive enzyme-polymer melts, stable bioaerosols, and hierarchically assembled solid membranes.The versatility in this new methodology is highly dependent on the ability to manipulate protein-protein interactions through the construction of an electrostatically-assembled polymer surfactant corona at the surface of a supercharged enzyme, which is based on the synthetic methodology recently pioneered by AWP. The approach involves the reengineering of a protein surface in two key steps: (i) amplification of the positive charge density on the protein surface, followed by (ii) electrostatic coupling of anionic polymer surfactant chains to the cationic sites on the protein surface. Significantly, the resulting surface-bound corona of polymer surfactant molecules increases the range of the attractive intermolecular protein-protein interactions, which in turn allows the particle motions required for melt formation under anhydrous conditions. Alternatively, the hydrophilic-lipophilic balance (HLB) of the corona can be tuned to either provide organic solvent compatibility for aerosol generation or to promote surfactant mediated self-assembly to produce nanoporous solids. Accordingly, the global aim of this research proposal is the rational design and synthesis of the organophosphate-degrading enzyme-polymer surfactant bioblocks that can be used for the preparation of these three classes of organophosphate decontaminating materials. The research program will be implemented sequentially across four primary research objectives: - In silico inspired design, expression and purification of a supercharged organophosphate hydrolase (scOPH) library - The synthesis of high-density scOPH-polymer melts - Active bioaerosol generation using organic solvent compatibility - Surfactant-mediated assembly of scOPH to give porous solids with recyclable catalytic activitiesThe research programme describes a scientific approach that combines in-house techniques for synthetic biology, biophysics and materials science, as well as techniques available at large-scale facilities. As there is a strong application focus in the programme, the new methodology describes the development of recombinant supercharged enzymes, which will be optimised for maximum catalytic performance. In conclusion, the development of a library of OP-degrading enzyme-polymer surfactant materials that can operate in all three phases represents a near-future platform technology that could be readily exploited for a multitude of new defence applications, including disbondable coating for military hardware or personnel, bioaerosol-based countermeasures for OP contaminated confined airspaces or for inhalation treatments, and high efficiency enzyme-based reactors for OP degradation/disposal.
由于有机磷农药在发展中国家农村地区的广泛应用,据估计,全世界每年约有300万人因有机磷农药中毒。OP还被用于化学战剂配方,包括2013年叙利亚Ghouta Sarin袭击事件和1994年和1995年日本地铁袭击事件。根据2013年9月发布的法国情报评估,仅叙利亚的库存就包括数百吨沙林和数十吨VX。因此,本研究建议描述了合成生物学的应用,用于合理设计通用的增压酶-聚合物表面活性剂构建块(生物块),用于制备跨越所有三个物质相的有机磷酸盐去污材料。在这里,有机磷降解酶有机磷水解酶(OPH)的合成增压变体的表面将被彻底重新设计,以产生粘性酶-聚合物熔体,稳定的生物气溶胶,和分级组装的固体膜。这种新方法的多功能性高度依赖于通过构建静电-组装的聚合物表面活性剂电晕在表面的超荷电酶,这是基于合成方法最近开创的AWP。该方法涉及两个关键步骤中的蛋白质表面的再工程:(i)蛋白质表面上的正电荷密度的放大,随后(ii)阴离子聚合物表面活性剂链与蛋白质表面上的阳离子位点的静电偶联。值得注意的是,所得到的聚合物表面活性剂分子的表面结合的冠增加了有吸引力的分子间蛋白质-蛋白质相互作用的范围,这反过来又允许在无水条件下熔融形成所需的颗粒运动。或者,可以调节电晕的亲水亲油平衡(HLB)以提供用于气溶胶生成的有机溶剂相容性或促进表面活性剂介导的自组装以产生纳米多孔固体。因此,本研究计划的总体目标是合理设计和合成可用于制备这三类有机磷去污材料的有机磷降解酶-聚合物表面活性剂生物块。该研究计划将在四个主要研究目标中依次实施:- 在silico灵感的设计,超荷电有机磷酸水解酶(scOPH)文库的表达和纯化-高密度scOPH-聚合物熔体的合成-使用有机溶剂相容性的活性生物气溶胶产生-表面活性剂-介导组装scOPH以提供具有可回收催化活性的多孔固体该研究计划描述了一种科学方法,该方法结合了合成生物学的内部技术,生物物理学和材料科学,以及在大型设施中可用的技术。由于该计划有很强的应用重点,新方法描述了重组增压酶的开发,这些酶将被优化以获得最大的催化性能。总之,可以在所有三个阶段发挥作用的OP降解酶-聚合物表面活性剂材料库的开发代表了一种不久的将来的平台技术,可以很容易地用于多种新的国防应用,包括用于军事硬件或人员的可剥离涂层,针对OP污染的密闭空气空间或吸入治疗的基于生物气溶胶的对策,以及用于OP降解/处置的高效酶基反应器。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measure of porosity in flax fibres reinforced polylactic acid biocomposites
- DOI:10.1016/j.compositesa.2020.106183
- 发表时间:2021-02-01
- 期刊:
- 影响因子:8.7
- 作者:de Kergariou, Charles;Le Duigou, Antoine;Scarpa, Fabrizio
- 通讯作者:Scarpa, Fabrizio
Hydrogel-Immobilized Supercharged Proteins
- DOI:10.1002/adbi.201700240
- 发表时间:2018-07-01
- 期刊:
- 影响因子:4.1
- 作者:Campbell, Eleanor C.;Grant, Jacob;Jackson, Colin J.
- 通讯作者:Jackson, Colin J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Perriman其他文献
The influence of the humidity on the mechanical properties of 3D printed continuous flax fibre reinforced poly(lactic acid) composites
湿度对 3D 打印连续亚麻纤维增强聚乳酸复合材料力学性能的影响
- DOI:
10.1016/j.compositesa.2022.106805 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:8.900
- 作者:
Charles de Kergariou;Hind Saidani-Scott;Adam Perriman;Fabrizio Scarpa;Antoine Le Duigou - 通讯作者:
Antoine Le Duigou
Adam Perriman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Perriman', 18)}}的其他基金
Supercharged protein-surfactant bioconjugates for next-generation cell therapies
用于下一代细胞疗法的增压蛋白质-表面活性剂生物缀合物
- 批准号:
MR/X01116X/1 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Fellowship
Supercharged protein-surfactant bioconjugates for next-generation cell therapies
用于下一代细胞疗法的增压蛋白质-表面活性剂生物缀合物
- 批准号:
MR/S016430/1 - 财政年份:2019
- 资助金额:
$ 45.53万 - 项目类别:
Fellowship
Chemical and biophysical studies of ionic protein fluids
离子蛋白液的化学和生物物理研究
- 批准号:
EP/H029230/1 - 财政年份:2010
- 资助金额:
$ 45.53万 - 项目类别:
Fellowship
相似国自然基金
酶响应的中性粒细胞外泌体载药体系在眼眶骨缺损修复中的作用及机制研究
- 批准号:82371102
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
- 批准号:82371738
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PCBP1和PCBP2调控cGAS的相变和酶活的机制研究
- 批准号:32370928
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
木质纤维素高效水解多酶混合物(multi-enzyme cocktails)的高通量分析及其理性定制
- 批准号:21176106
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Nrf2-ARE通路在脑缺血性卒中的作用及机制研究
- 批准号:30700254
- 批准年份:2007
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
非水相微波辐射-酶耦合催化(MIECC)的作用机制
- 批准号:20476038
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Development of Reversible Double-Layer Polymer Modification Technology to Break the Safety/Efficacy Trade-Off of Delivering Enzyme
开发可逆双层聚合物改性技术,打破酶递送安全性/有效性的权衡
- 批准号:
23K28429 - 财政年份:2024
- 资助金额:
$ 45.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Preoperative immunotherapy in Hepatocellular Carcinoma
肝细胞癌的术前免疫治疗
- 批准号:
10578074 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Development of Reversible Double-Layer Polymer Modification Technology to Break the Safety/Efficacy Trade-Off of Delivering Enzyme
开发可逆双层聚合物改性技术,打破酶递送安全性/有效性的权衡
- 批准号:
23H03740 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Chronic Murine Cerebral Mycosis: Pathogenesis, Neuroimmune Response, and Relevance to Alzheimer's Disease
慢性鼠脑真菌病:发病机制、神经免疫反应以及与阿尔茨海默病的相关性
- 批准号:
10723848 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Virus and olfactory system interactions accelerate Alzheimer's disease pathology
病毒和嗅觉系统相互作用加速阿尔茨海默病病理学
- 批准号:
10669880 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Biodegradable Metal Stent Alloys for Vascular Applications
用于血管应用的可生物降解金属支架合金
- 批准号:
10643743 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Nanoparticle-mediated targeting of hepatic macrophages to mitigate inflammation in alcoholic liver disease
纳米颗粒介导的肝巨噬细胞靶向减轻酒精性肝病炎症
- 批准号:
10352578 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Control of electron transfer reaction between enzyme and electrode by site-specific addition of hydrophilic polymer
通过亲水聚合物的位点特异性添加控制酶和电极之间的电子转移反应
- 批准号:
22K05426 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nanoparticle-mediated targeting of hepatic macrophages to mitigate inflammation in alcoholic liver disease
纳米颗粒介导的肝巨噬细胞靶向减轻酒精性肝病炎症
- 批准号:
10594044 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Development of Coccidioides Cytokine Release Assay
球孢子菌细胞因子释放测定的发展
- 批准号:
10361440 - 财政年份:2021
- 资助金额:
$ 45.53万 - 项目类别:














{{item.name}}会员




