Quantum-Interference-Enhanced Thermoelectricity (QUIET).
量子干涉增强热电(QUIET)。
基本信息
- 批准号:EP/N03337X/1
- 负责人:
- 金额:$ 45.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum interference is a mechanism which can be used to manipulate the electrical properties of a single molecule by exploiting the property that an electron can be considered to be a wave as well as a particle. It turns out that constructive or destructive interference of electrons within individual organic molecules can be engineered precisely by the addition of various atomic groups to the molecule or by carefully selecting the connection of the molecule to external electrodes. Although the dream of manipulating quantum interference in single molecules has been discussed for many years, experimental evidence of room-temperature interference effects in single-molecule junctions was reported only recently. Building on these demonstrations of quantum interference, QuIET aims to deliver the next breakthrough by designing and realising technologically-relevant materials and devices, which exploit quantum interference at room-temperature and above.Waste heat from information technologies currently results carbon emissions which are comparable to those of the total global aviation industry. QuIET aims to address this global challenge by inventing new materials, which efficiently convert this waste heat into useful electricity. Our target materials are thin films formed from single layers or a few layers of molecules, sandwiched between planar electrodes. Quantum interference will be used to optimise their ability to convert waste heat into electricity and for on-chip cooling. This will be achieved by designing, synthesising and measuring molecules with a high Seebeck coefficient, which determines the voltage generated when a temperature difference is applied to the two sides of a molecule or a thin film. Conversely, if a voltage is applied across a molecule, the closely-related Peltier coefficient determines the magnitude of the cooling effect that can be created.It turns out that the Seebeck coefficient is proportional to the number of electrons within the molecule and also how the density of electronic states is distributed with energy. Both of these can be manipulated in certain families of organic molecules using quantum interference. A third property important for heat recovery (the first two being the electrical conductance and the Seebeck coefficient) is the thermal conductance, which needs to be low. Within a bulk material it is difficult to engineer simultaneously high electrical conductance and low thermal conductance. However for single molecules or thin molecular films attached to electrodes, the thermal conductance can be engineered by selecting slippery anchor groups, for binding the molecules to the electrodes and by introducing soft internal mechanical degrees of freedom, which further reduce phonon transport.The technical challenges that this proposal addresses are four-fold. The first is to identify theoretically families of molecules that will have the propensity for large quantum interference effects, and to predict which atomic groups and which anchor groups will optimise their properties. The second is to synthesise these molecules and the third is to measure their properties at the single molecular level to feed back to the theoretic models. The fourth and final challenge is to investigate whether these superior properties persist when the molecules are turned into a vast parallel array of molecules, known as a self-assembled molecular layer. Understanding the hurdles that need to be overcome to realise quantum interference effects at room temperature in macroscopic thin-film arrays of molecules, will help identify the first steps to a new type of technology that has important societal and economic impacts in the real world and addresses pressing problems with on-chip cooling and energy-efficient heat recovery.
量子干涉是一种可以用来操纵单个分子的电学性质的机制,它利用了电子可以被认为是波和粒子的特性。事实证明,通过向分子中添加各种原子团或仔细选择分子与外部电极的连接,可以精确地设计单个有机分子中电子的相长或相消干涉。虽然在单分子中操纵量子干涉的梦想已经讨论了很多年,但在单分子结中室温干涉效应的实验证据只是最近才报道的。在这些量子干涉演示的基础上,QuIET旨在通过设计和实现技术相关的材料和设备来实现下一个突破,这些材料和设备在室温及以上的温度下利用量子干涉。信息技术产生的废热目前导致的碳排放量与全球航空业的总排放量相当。QuIET旨在通过发明新材料来应对这一全球挑战,这些材料可以有效地将废热转化为有用的电力。我们的目标材料是由单层或几层分子形成的薄膜,夹在平面电极之间。量子干涉将用于优化它们将废热转化为电能的能力和片上冷却的能力。这将通过设计、合成和测量具有高塞贝克系数的分子来实现,塞贝克系数决定了当温度差施加到分子或薄膜的两侧时产生的电压。相反,如果在分子上施加电压,则与之密切相关的珀耳帖系数决定了可以产生的冷却效应的大小。事实证明,塞贝克系数与分子内的电子数量以及电子态密度如何随能量分布成正比。这两者都可以在某些有机分子家族中使用量子干涉进行操纵。对于热回收重要的第三个性质(前两个是电导率和塞贝克系数)是热导率,其需要低。在块体材料中,难以同时设计高电导率和低热导率。然而,对于连接到电极的单分子或薄分子膜,可以通过选择用于将分子结合到电极的光滑锚基团以及通过引入进一步减少声子传输的软内部机械自由度来设计热导。首先是从理论上确定具有大量子干涉效应倾向的分子家族,并预测哪些原子团和哪些锚基团将优化其特性。第二是合成这些分子,第三是在单分子水平上测量它们的性质以反馈到理论模型。第四个也是最后一个挑战是研究当分子变成一个巨大的平行分子阵列时,这些上级特性是否仍然存在,称为自组装分子层。了解在室温下实现宏观薄膜分子阵列中的量子干涉效应所需克服的障碍,将有助于确定新型技术的第一步,该技术在真实的世界中具有重要的社会和经济影响,并解决芯片冷却和节能热回收的紧迫问题。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The conductance of porphyrin-based molecular nanowires increases with length
卟啉基分子纳米线的电导随长度增加而增加
- DOI:10.48550/arxiv.1804.04253
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Algethami N
- 通讯作者:Algethami N
Orientational control of molecular scale thermoelectricity.
- DOI:10.1039/d2na00515h
- 发表时间:2022-10-25
- 期刊:
- 影响因子:4.7
- 作者:Alshammari, Majed;Al-Jobory, Alaa A.;Alotaibi, Turki;Lambert, Colin J.;Ismael, Ali
- 通讯作者:Ismael, Ali
Conformation and Quantum-Interference-Enhanced Thermoelectric Properties of Diphenyl Diketopyrrolopyrrole Derivatives.
- DOI:10.1021/acssensors.0c02043
- 发表时间:2021-02-26
- 期刊:
- 影响因子:8.9
- 作者:Almughathawi R;Hou S;Wu Q;Liu Z;Hong W;Lambert C
- 通讯作者:Lambert C
Single-Molecule Conductance Studies of Organometallic Complexes Bearing 3-Thienyl Contacting Groups.
- DOI:10.1002/chem.201604565
- 发表时间:2017-02-10
- 期刊:
- 影响因子:0
- 作者:Bock S;Al-Owaedi OA;Eaves SG;Milan DC;Lemmer M;Skelton BW;Osorio HM;Nichols RJ;Higgins SJ;Cea P;Long NJ;Albrecht T;Martín S;Lambert CJ;Low PJ
- 通讯作者:Low PJ
Multi-component self-assembled molecular-electronic films: towards new high-performance thermoelectric systems.
- DOI:10.1039/d2sc00078d
- 发表时间:2022-05-11
- 期刊:
- 影响因子:8.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Lambert其他文献
Computational studies of Agsub5/sub atomic quantum clusters deposited on anatase and rutile TiOsub2/sub surfaces
沉积在锐钛矿和金红石型二氧化钛表面的银原子量子团簇的计算研究
- DOI:
10.1016/j.apsusc.2022.156054 - 发表时间:
2023-03-15 - 期刊:
- 影响因子:6.900
- 作者:
Moteb Alotaibi;Qingqing Wu;Colin Lambert - 通讯作者:
Colin Lambert
Protonation Tuning of Quantum Interference in Azulene-Type Single-Moleclar Junctions
甘菊型单分子结中量子干涉的质子化调谐
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:8.4
- 作者:
Guogang Yang;Sara Sangtarash;Zitong Liu;Xiaohui Li;Hatef Sadeghi;Zhibing Tan;Ruihao Li;Jueting Zheng;Xiaobiao Dong;Junyang Liu;Yang Yang;Jia Shi;Zongyuan Xiao;Guanxin Zhang;Colin Lambert;Wenjing Hong;Deqing Zhang - 通讯作者:
Deqing Zhang
Electron and proton conducting framework organic salt single crystals
电子和质子传导骨架有机盐单晶
- DOI:
10.1016/j.jssc.2022.122903 - 发表时间:
2022 - 期刊:
- 影响因子:3.3
- 作者:
Chen Wang;Tingting Yan;Guolong Xing;Steven Bailey;Colin Lambert;Pierre Fayon;Abbie Trewin;Teng Ben - 通讯作者:
Teng Ben
Alternative Delivery Systems Four Experts Examine their Impact
- DOI:
10.14219/jada.archive.1982.0431 - 发表时间:
1982-10-01 - 期刊:
- 影响因子:
- 作者:
Colin Lambert - 通讯作者:
Colin Lambert
Colin Lambert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Lambert', 18)}}的其他基金
Quantum engineering of energy-efficient molecular materials (QMol)
节能分子材料的量子工程(QMol)
- 批准号:
EP/X026876/1 - 财政年份:2023
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
Self-assembled molecular monolayers with ultra-low thermal conductance for energy harvesting (QSAMs)
用于能量收集的具有超低热导的自组装单分子层(QSAM)
- 批准号:
EP/P027156/1 - 财政年份:2017
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
Supramolecular Nanorings for Exploring Quantum Interference
用于探索量子干涉的超分子纳米环
- 批准号:
EP/M014452/1 - 财政年份:2015
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
Transition-edge sensors: achieving true potential
过渡边缘传感器:发挥真正的潜力
- 批准号:
EP/K001507/1 - 财政年份:2013
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
ULTRA-HIGH-RESOLUTION, ULTRA-SENSITIVE MULTIFUNCTIONAL BALLISTIC NANO SENSORS FOR THE SIMULTANEOUS DETECTION OF MAGNETIC, ELECTRIC AND OPTICAL FIELDS
用于同时检测磁场、电场和光学场的超高分辨率、超灵敏多功能弹道纳米传感器
- 批准号:
EP/J014753/1 - 财政年份:2012
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
Medium effects in single molecule electronics
单分子电子学中的介质效应
- 批准号:
EP/H035818/1 - 财政年份:2011
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
EXTRAORDINARY MAGNETORESISTANCE NANO SENSORS - FUNDAMENTAL ISSUES AND APPLICATIONS
非凡的磁阻纳米传感器 - 基本问题和应用
- 批准号:
EP/F067216/1 - 财政年份:2008
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
SMEAGOL: Spin and Molecular Electronics in Atomically-Generated Orbital Landscapes
SMEAGOL:原子生成轨道景观中的自旋和分子电子学
- 批准号:
EP/F014929/1 - 财政年份:2007
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
相似国自然基金
基于非分裂神经元系统的CRISPR interference作用机制及应用研究
- 批准号:31771482
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
ERI: AI-Enhanced Dynamic Interference Suppression in Cognitive Sensing with Reconfigurable Sparse Arrays
ERI:利用可重构稀疏阵列在认知传感中进行人工智能增强型动态干扰抑制
- 批准号:
2347220 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Standard Grant
Quantum-Interference-Enhanced Thermoelectricity (QUIET).
量子干涉增强热电(QUIET)。
- 批准号:
EP/N032977/2 - 财政年份:2017
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
Quantum-Interference-Enhanced Thermoelectricity (QUIET).
量子干涉增强热电(QUIET)。
- 批准号:
EP/N032977/1 - 财政年份:2016
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
Development of high contrast fluorescence microscopy using enhanced fluorescence of an optical interference mirror slide
利用光学干涉镜载玻片的增强荧光开发高对比度荧光显微镜
- 批准号:
26350518 - 财政年份:2014
- 资助金额:
$ 45.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeTS: Small: Enhanced Interference Alignment for Networks using Reconfigurable Antennas
NeTS:小型:使用可重新配置天线增强网络干扰对准
- 批准号:
1422964 - 财政年份:2014
- 资助金额:
$ 45.45万 - 项目类别:
Standard Grant
Enhanced self-pollination in a domestic herb: enaminations of reproductive interference from alien species and decreased genetic divergence
增强国产草本植物的自花授粉:消除外来物种的生殖干扰并减少遗传差异
- 批准号:
25430199 - 财政年份:2013
- 资助金额:
$ 45.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monitoring of the blood anesthetics gas levels using interference enhanced reflection method
干涉增强反射法监测血液麻醉气体浓度
- 批准号:
22659280 - 财政年份:2010
- 资助金额:
$ 45.45万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Dinamic and functional analysis of osteoclast activity using video-enhanced contrast-differential interference contrast (VEC-DIC) microscopy
使用视频增强对比微分干涉对比 (VEC-DIC) 显微镜对破骨细胞活性进行动态和功能分析
- 批准号:
17591561 - 财政年份:2005
- 资助金额:
$ 45.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Enhanced Superconducting Quantum Interference Device (SQUID) Electronics and Sensors Adapted for Use with Cryogenic Detectors
SBIR 第二阶段:适用于低温探测器的增强型超导量子干涉装置 (SQUID) 电子设备和传感器
- 批准号:
9623957 - 财政年份:1997
- 资助金额:
$ 45.45万 - 项目类别:
Standard Grant
Equipment: Video Enhanced Contrast Differential Interference Microscopy
设备:视频增强对比度微分干涉显微镜
- 批准号:
8406017 - 财政年份:1984
- 资助金额:
$ 45.45万 - 项目类别:
Standard Grant