A Robot Training Buddy for adults with ASD

为患有自闭症谱系障碍 (ASD) 的成人提供的机器人训练伙伴

基本信息

  • 批准号:
    EP/N034546/1
  • 负责人:
  • 金额:
    $ 92.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Autism Spectrum Disorder (ASD) affects 695,000 people in the UK, and about 547,000 of these are 18 or over (1.3% of the adults in working age). The unemployment rate among adults with an ASD is higher than 85%, nearly double the unemployment rate of 48% for the wider disabled population. One reason for this is that people with an ASD struggle to interpret social signals, those expressive behavioural cues through which people manifest what they feel or think (facial expressions, vocalisations, gestures, etc.). This project will develop a Socially-Competent Robot Training Buddy that will help adults with ASD to better deal with social signals in work-related scenarios.The project is inherently interdisciplinary and falls in the new research area of Socially Assistive Robotics, at the crossroads between robotics, psychology, and social signal processing. So far, autonomous robots have largely been seen as functionally engineered to carrying out well-defined tasks in an efficient manner. However Socially Assistive Robots (SARs) must fit into normal human social environments and follow interaction rules that do not disrupt an office or a home or upset their human interaction partners. This project will focus on high-functioning adults with an ASD, and just as physically assistive robots enable people to make movements that are difficult because of physical impairments, the SAR of this project enables people with an ASD to perform social tasks that are difficult - if not impossible - due to social cognition impairments.The main goal is to reduce the cost of Behavioural Skills Training (BST) through the development of a Robot Training Buddy. BST is recognized as one of the most effective approaches to alleviate ASD effects, but cannot be applied extensively because it is labour intensive. Using an autonomous robot would reduce the human effort and cost of BST and make it more widely available. The main technological challenge is the development of a novel affective architecture that makes a robot suitable for behaviour rehearsal, a critical stage of BST. In behaviour rehearsal, the robot must reinforce the use of appropriate social signals by its human interaction partner while inhibiting the use of inappropriate ones. The team will work with stakeholders involved with training for adults with an ASD to develop workplace-relevant scenarios in which to develop and evaluate the Training Buddy with end-users.This work will develop the necessary scientific basis for the introduction of socially-competent robots into human social environments, opening the way to a multitude of domestic, educational and assistive applications.
自闭症谱系障碍(ASD)在英国影响着69.5万人,其中约54.7万人年龄在18岁或以上(占工作年龄成年人的1.3%)。患有自闭症谱系障碍的成年人的失业率超过85%,几乎是一般残疾人群失业率(48%)的两倍。其中一个原因是,自闭症患者很难理解社会信号,即人们通过这些信号表达自己的感受或想法(面部表情、声音、手势等)的表达性行为线索。该项目将开发一个具有社交能力的机器人训练伙伴,帮助患有自闭症的成年人更好地处理与工作相关的社交信号。该项目本质上是跨学科的,属于社会辅助机器人的新研究领域,处于机器人、心理学和社会信号处理的十字路口。到目前为止,自主机器人在很大程度上被视为在功能上被设计成以有效的方式执行定义明确的任务。然而,社会辅助机器人(sar)必须适应正常的人类社会环境,并遵循不会扰乱办公室或家庭或扰乱其人类互动伙伴的互动规则。这个项目将专注于患有自闭症谱系障碍的高功能成年人,正如身体辅助机器人使人们能够做出由于身体障碍而困难的运动一样,这个项目的SAR使自闭症谱系障碍患者能够执行由于社会认知障碍而困难的社会任务,如果不是不可能的话。主要目标是通过开发机器人训练伙伴来降低行为技能训练(BST)的成本。BST被认为是缓解ASD影响最有效的方法之一,但由于它是劳动密集型的,因此不能广泛应用。使用自主机器人将减少人力和BST的成本,并使其得到更广泛的应用。主要的技术挑战是开发一种新的情感架构,使机器人适合行为排练,这是BST的关键阶段。在行为预演中,机器人必须加强其人类互动伙伴对适当社交信号的使用,同时抑制不适当社交信号的使用。该团队将与参与ASD成人培训的利益相关者合作,开发与工作场所相关的场景,以便与最终用户一起开发和评估培训伙伴。这项工作将为将具有社会能力的机器人引入人类社会环境奠定必要的科学基础,为大量的家庭、教育和辅助应用开辟道路。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Architecture for Emotional Facial Expressions as Social Signals
  • DOI:
    10.1109/taffc.2019.2906200
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Aylett, Ruth;Ritter, Christopher;Rajendran, Gnanathusharan
  • 通讯作者:
    Rajendran, Gnanathusharan
Social Robotics
社交机器人
  • DOI:
    10.1007/978-3-319-70022-9_19
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McKenna P
  • 通讯作者:
    McKenna P
Robot expressive behaviour and autistic traits
机器人表达行为和自闭症特征
Cultural Social Signal Interplay with an Expressive Robot
文化社交信号与富有表现力的机器人的相互作用
  • DOI:
    10.1145/3267851.3267905
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McKenna P
  • 通讯作者:
    McKenna P
On the privacy of mental health apps: An empirical investigation and its implications for app development.
关于心理健康应用程序的隐私:实证调查及其对应用程序开发的影响。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruth Aylett其他文献

Guest editorial of the special issue on intelligent virtual agents
  • DOI:
    10.1007/s10458-009-9098-5
  • 发表时间:
    2009-05-19
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Stefan Kopp;Ruth Aylett;Jonathan Gratch;Patrick L. Olivier;Catherine Pelachaud
  • 通讯作者:
    Catherine Pelachaud
Erratum to: “FearNot!”: a computer-based anti-bullying-programme designed to foster peer intervention
  • DOI:
    10.1007/s10212-013-0178-1
  • 发表时间:
    2013-02-12
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Natalie Vannini;Sibylle Enz;Maria Sapouna;Dieter Wolke;Scott Watson;Sarah Woods;Kerstin Dautenhahn;Lynne Hall;Ana Paiva;Elisabeth André;Ruth Aylett;Wolfgang Schneider
  • 通讯作者:
    Wolfgang Schneider
PLANFORM-KA tool : Towards a Methodology of Knowledge Acquisition in AI Planning
PLANFORM-KA 工具:迈向人工智能规划中知识获取的方法论
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christophe Doniat;Ruth Aylett
  • 通讯作者:
    Ruth Aylett
Experiential AI: Between Arts and Explainable AI
体验式人工智能:艺术与可解释人工智能之间
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Drew Hemment;Dave Murray;Vaishak Belle;Ruth Aylett;Matjaz Vidmar;Frank Broz
  • 通讯作者:
    Frank Broz

Ruth Aylett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruth Aylett', 18)}}的其他基金

Agent-based Memory Prosthesis to Encourage Reminiscing (AMPER)
基于代理的记忆假体鼓励回忆(AMPER)
  • 批准号:
    EP/V056131/1
  • 财政年份:
    2022
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
Expressive behaviour as a social signal for socially-competent human-robot interaction: Expre-ss
表达行为作为具有社交能力的人机交互的社交信号:Express-ss
  • 批准号:
    EP/T013737/1
  • 财政年份:
    2020
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
RIDERS: Research In Interactive Drama Environments, Role-Play and Story-telling
RIDERS:互动戏剧环境、角色扮演和讲故事的研究
  • 批准号:
    EP/I032037/1
  • 财政年份:
    2011
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
Designing Effective Research Spaces Sandpit: SPIRES- Supporting People Investigating Research Environments and Spaces
设计有效的研究空间沙坑:SPIRES - 支持人们调查研究环境和空间
  • 批准号:
    EP/H042695/1
  • 财政年份:
    2010
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
Narrative environments and computer games for learning systems
用于学习系统的叙事环境和计算机游戏
  • 批准号:
    EP/D03955X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant

相似海外基金

New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Studentship
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
  • 批准号:
    IC230100001
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Industrial Transformation Training Centres
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
  • 批准号:
    EP/Y032640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
  • 批准号:
    EP/Y03693X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Training Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
Project Incubation: Training Undergraduates in Collaborative Research Ethics
项目孵化:培养本科生合作研究伦理
  • 批准号:
    2316154
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
REU Site: ASL-English Bilingual Cognitive and Educational Neuroscience Training and Research Experience (ASL-English Bilingual CENTRE)
REU网站:ASL-英语双语认知和教育神经科学培训和研究经验(ASL-英语双语中心)
  • 批准号:
    2349454
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了