Data Assimilation for the REsilient City (DARE)
弹性城市的数据同化 (DARE)
基本信息
- 批准号:EP/P002331/1
- 负责人:
- 金额:$ 217.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data assimilation is an emerging mathematical technique for improving predictions from large and complex forecasting models, by combining uncertain model predictions with a diverse set of observational data in a dynamic feedback loop. The project will use advanced data assimilation to combine a range of advanced sensors with state-of-the-art computational models and produce a step-change in the skill of forecasts of urban natural hazards such as floods, snow, ice and heat stress. The research will use synthetic aperture radar (SAR) data to develop a tool for real-time detection of flooded urban areas. SAR sensors take images from space over a wide area and can see through clouds. The sensors have resolutions as high as 1m, and are able to image flooded streets. However, substantial areas of urban ground surface may not be visible to the SAR due to shadows caused by buildings. Furthermore, shadowed areas may be misclassified as water even if dry. Our new approach is to use a SAR simulator in conjunction with lidar data. The SAR simulator estimates regions in the image in which water will not be visible due to shadow, and masks these out from the ground surface considered, resulting in a more accurate flood extent. This type of information could be used by first responders to monitor vital infrastructure and understand the extent and depth of the evolving flood.SAR images can also be used to extract water level observations, which may be assimilated into a flood inundation model, to calibrate the system and keep predictions on track. Our recent ground-breaking work demonstrates the possibility of earth-observation-based flood inundation data assimilation and forecasting over a rural area. In this new project we aim to carry out scientific and mathematical studies to increase the flexibility of our flood data assimilation system, so that it can be straightforwardly applied at any location in the UK (including urban areas). For example, the behaviour of the system is expected to change for larger floods, steeper rivers, faster flow etc. In addition, we will develop techniques to derive new types of water level observations from smartphone photographs, traffic and river CCTV cameras, that can also be assimilated to improve predictive skill.A number of environmental hazards are caused by the weather (e.g., heat stress, high winds, fog). The skill of numerical weather prediction is strongly constrained by the accuracy of the initial data, as estimated by assimilating expensive observations. There are burgeoning sources of inexpensive datasets of opportunity (citizen science, sensor networks etc.) that could be used, however lack of knowledge about natural variability in urban areas hinders uptake of these data. This proposal addresses uncertainty due to urban natural variability in observation-model comparisons, by considering numerical weather prediction models on a range of scales, and observational data with different "footprints". We will apply these results to citizen science automatic weather station data, car temperature sensors and commercial aircraft reports made to air traffic control (used to derive observations of winds and temperature).The impact of this research will be guaranteed by working with operational providers of flood warnings and weather forecasts (the Environment Agency and Met Office). Commercialization of aspects of the research will be pursued in conjunction with the Institute for Environmental Analytics.A network of researchers and industry working with digital technology at the "Living with Environmental Change" interface will be formed. This will have a programme of workshops, webinars, training and industry study groups to cross barriers between academic disciplines, creating bridges between academia and industry and providing space for junior and senior researchers to explore ideas. Funded pilot projects will kick-start activities and help define the future research agenda.
数据同化是一种新兴的数学技术,通过在动态反馈环中将不确定的模式预测与不同的观测数据集相结合,来改进来自大型和复杂预报模式的预测。该项目将使用先进的数据同化技术,将一系列先进的传感器与最先进的计算模型相结合,并在预测洪水、雪、冰和热应力等城市自然灾害的技能方面产生阶段性变化。这项研究将使用合成孔径雷达(SAR)数据来开发一种工具,用于实时检测城市洪水泛滥的地区。合成孔径雷达传感器在大范围内从太空拍摄图像,可以看穿云层。传感器的分辨率高达1M,能够拍摄被洪水淹没的街道的图像。然而,由于建筑物造成的阴影,香港特别行政区可能看不到大部分市区地面。此外,即使干燥,阴影区也可能被错误地归类为水。我们的新方法是结合激光雷达数据使用合成孔径雷达模拟器。合成孔径雷达模拟器估计图像中由于阴影而看不到水的区域,并将这些区域从所考虑的地面掩蔽出来,从而产生更准确的洪水范围。这种类型的信息可以被急救人员用来监测重要的基础设施,了解不断演变的洪水的范围和深度。合成孔径雷达图像也可以用来提取水位观测,这些观测可以被同化成洪水淹没模型,以校准系统并保持预测的正轨。我们最近的开创性工作证明了在农村地区进行基于地球观测的洪水淹没数据同化和预报的可能性。在这个新项目中,我们的目标是进行科学和数学研究,以增加我们的洪水数据同化系统的灵活性,以便它可以直接应用于英国的任何地方(包括城市地区)。例如,系统的行为预计会随着更大的洪水、更陡峭的河流、更快的水流等而发生变化。此外,我们将开发技术,从智能手机照片、交通和河流闭路电视摄像头得出新类型的水位观测,也可以被吸收以提高预测技能。许多环境危害是由天气(例如,热应力、大风、雾)造成的。数值天气预报的技巧受到初始数据准确性的强烈制约,这些数据是通过同化昂贵的观测值估计的。廉价的机会数据集(公民科学、传感器网络等)的来源正在蓬勃发展。这是可以利用的,然而,缺乏关于城市地区自然变异性的知识阻碍了对这些数据的理解。这项建议通过考虑一系列尺度上的数值天气预报模型和具有不同“足迹”的观测数据,解决了观测模型比较中城市自然变异性造成的不确定性。我们将把这些结果应用于公民科学自动气象站数据、汽车温度传感器和商用飞机对空中交通管制的报告(用于得出风和温度的观测)。这项研究的影响将通过与洪水警报和天气预报的业务提供商(环境局和气象局)合作来保证。这项研究的某些方面将与环境分析研究所合作进行商业化,并将形成一个在“与环境变化共存”界面使用数字技术的研究人员和产业界的网络。这将包括研讨会、网络研讨会、培训和行业研究小组,以跨越学术学科之间的障碍,在学术界和行业之间建立桥梁,并为初级和高级研究人员提供探索想法的空间。资助的试点项目将启动活动,并帮助确定未来的研究议程。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wetropolis extreme rainfall and flood demonstrator: from mathematical design to outreach
Wetropolis 极端降雨和洪水演示:从数学设计到推广
- DOI:10.5194/hess-24-2483-2020
- 发表时间:2020
- 期刊:
- 影响因子:6.3
- 作者:Bokhove O
- 通讯作者:Bokhove O
A Cost-Effectiveness Protocol for Flood-Mitigation Plans Based on Leeds' Boxing Day 2015 Floods
基于 2015 年利兹节礼日洪水的防洪计划成本效益协议
- DOI:10.3390/w12030652
- 发表时间:2020
- 期刊:
- 影响因子:3.4
- 作者:Bokhove O
- 通讯作者:Bokhove O
The Role of Digital Technologies in Responding to the Grand Challenges of the Natural Environment: The Windermere Accord.
- DOI:10.1016/j.patter.2020.100156
- 发表时间:2021-01-08
- 期刊:
- 影响因子:0
- 作者:Blair GS;Bassett R;Bastin L;Beevers L;Borrajo MI;Brown M;Dance SL;Dionescu A;Edwards L;Ferrario MA;Fraser R;Fraser H;Gardner S;Henrys P;Hey T;Homann S;Huijbers C;Hutchison J;Jonathan P;Lamb R;Laurie S;Leeson A;Leslie D;McMillan M;Nundloll V;Oyebamiji O;Phillipson J;Pope V;Prudden R;Reis S;Salama M;Samreen F;Sejdinovic D;Simm W;Street R;Thornton L;Towe R;Hey JV;Vieno M;Waller J;Watkins J
- 通讯作者:Watkins J
Communicating (nature-based) flood-mitigation schemes using flood-excess volume
利用洪水过剩量传达(基于自然的)防洪方案
- DOI:10.1002/rra.3507
- 发表时间:2019
- 期刊:
- 影响因子:2.2
- 作者:Bokhove O
- 通讯作者:Bokhove O
Wetropolis extreme rainfall and flood demonstrator: from mathematical design to outreach and research
Wetropolis 极端降雨和洪水演示:从数学设计到推广和研究
- DOI:10.5194/hess-2019-191
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bokhove O
- 通讯作者:Bokhove O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Dance其他文献
3D volume reconstruction for pediatric scoliosis evaluation using motion-tracked ultrasound
使用运动跟踪超声进行 3D 体积重建以评估儿童脊柱侧弯
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lucas Hintz;Sarah C. Nanziri;Sarah Dance;K. Jawed;Matthew Oetgen;T. Ungi;G. Fichtinger;Christopher Schlenger;Kevin Cleary - 通讯作者:
Kevin Cleary
Sarah Dance的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Dance', 18)}}的其他基金
Improving high impact weather forecasts via an international comparison of ObServation error Correlations in data Assimilation (OSCA)
通过数据同化观测误差相关性 (OSCA) 的国际比较改进高影响天气预报
- 批准号:
NE/N006682/1 - 财政年份:2015
- 资助金额:
$ 217.47万 - 项目类别:
Research Grant
Forecasting Rainfall exploiting new data Assimilation techniques and Novel observations of Convection (FRANC)
利用新数据同化技术和新的对流观测(FRANC)来预测降雨
- 批准号:
NE/K008900/1 - 财政年份:2013
- 资助金额:
$ 217.47万 - 项目类别:
Research Grant
Developing enhanced impact models for integration with next generation NWP and climate outputs
开发增强的影响模型以与下一代数值天气预报和气候输出相结合
- 批准号:
NE/I005242/1 - 财政年份:2011
- 资助金额:
$ 217.47万 - 项目类别:
Research Grant
Changing coastlines: data assimilation for morphodynamic prediction and predictability
不断变化的海岸线:形态动力学预测和可预测性的数据同化
- 批准号:
NE/E002048/1 - 财政年份:2007
- 资助金额:
$ 217.47万 - 项目类别:
Research Grant
相似海外基金
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
- 批准号:
24K17129 - 财政年份:2024
- 资助金额:
$ 217.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Twelfth (12th) Workshop on Meteorological Sensitivity Analysis and Data Assimilation; Lake George, New York; May 19-24, 2024
第十二届(十二届)气象敏感性分析与资料同化研讨会;
- 批准号:
2330336 - 财政年份:2024
- 资助金额:
$ 217.47万 - 项目类别:
Standard Grant
CAREER: What's Past is Prologue: Seamless Assimilation of Past Observations into Simulations of Future Ice Sheets
职业:过去的只是序幕:将过去的观察无缝同化为未来冰盖的模拟
- 批准号:
2235920 - 财政年份:2024
- 资助金额:
$ 217.47万 - 项目类别:
Standard Grant
VOLCANIC CLASSIC: VOLCANIC eruptions and CLimAte response - Stratospheric Sulfate isotopes in Ice Cores, data assimilation, and climate sensitivity
火山经典:火山喷发和气候响应 - 冰芯中的平流层硫酸盐同位素、数据同化和气候敏感性
- 批准号:
EP/Z000645/1 - 财政年份:2024
- 资助金额:
$ 217.47万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Fostering Belonging and Assimilation Among recently Arrived Refugees
博士论文研究:促进新抵达难民的归属感和同化
- 批准号:
2342613 - 财政年份:2024
- 资助金额:
$ 217.47万 - 项目类别:
Standard Grant
Enhancing Multidisciplinary Team Meetings via AI-Enabled Data Assimilation
通过人工智能支持的数据同化增强多学科团队会议
- 批准号:
IM240100224 - 财政年份:2024
- 资助金额:
$ 217.47万 - 项目类别:
Mid-Career Industry Fellowships
ThirdGen: The Third Generation: Dissimilation from Origins and Assimilation into Destination
ThirdGen:第三代:从起源的异化和目的地的同化
- 批准号:
EP/Y03676X/1 - 财政年份:2024
- 资助金额:
$ 217.47万 - 项目类别:
Research Grant
Development of removal system of nitrate nitrogen in groundwater in Kumamoto City by immobilized nitrate assimilation yeast.
固定化硝酸盐同化酵母去除熊本市地下水硝酸盐氮系统的开发
- 批准号:
23K05501 - 财政年份:2023
- 资助金额:
$ 217.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
COLLABORATIVE RESEARCH: Quantifying the effects of variable light and iron on the nitrate assimilation isotope effect of phytoplankton
合作研究:量化可变光和铁对浮游植物硝酸盐同化同位素效应的影响
- 批准号:
2333913 - 财政年份:2023
- 资助金额:
$ 217.47万 - 项目类别:
Standard Grant
CAREER: Embedded Data Assimilation for Complex Turbulent Reacting Flows
职业:复杂湍流反应流的嵌入式数据同化
- 批准号:
2236904 - 财政年份:2023
- 资助金额:
$ 217.47万 - 项目类别:
Continuing Grant














{{item.name}}会员




